Reactions of η^{2}-tetracarbonylmanganese complexes derived from podocarpic acid with electrophiles; functionalization of ring C

Richard C. Cambie, Michael R. Metzler, Clifton E.F. Rickard, Peter S. Rutledge and Paul D. Woodgate
Department of Chemistry, University of Auckland, Private Bag (New Zealand)
(Received September 24, 1991)

Abstract

Reaction of tetracarbonylmanganese(I) complexes derived from podocarpic acid (1) with electrophilic bromine or iodine in CCl_{4} leads to 14-halogenated derivatives inaccessible by direct halogenation. Similar reactions in protic solvents lead to the formation of γ-lactones in high yield. The structure of one of these was established unequivocally by X-ray crystallography. Attempted oxidation of the C-Mn bond with a number of reagents proved generally to be unsuccessful.

Introduction

Cyclomanganation can be used to activate specific sites in substituted arenes [1]. The $\boldsymbol{\eta}^{1}-\mathrm{C}-\mathrm{Mn}$ bond in ortho manganated aryl ketones can be transmetallated with either mercury(II) chloride [2] or palladium(II) chloride [3], thereby allowing Heck-type insertion reactions of substituted alkenes. Activation of aryltetracarbonylmanganese(I) complexes by oxidative decarbonylation with $\mathrm{Me}_{3} \mathrm{NO}$ followed by coupling with alkenes and alkynes gives substituted indanols and indenols [4-6]. The reaction of ortho manganated aryl complexes with electrophilic halogen has been documented [7-9]. We have investigated the reactions of some ortho manganated complexes of podocarpic acid derivatives with various sources of electrophilic bromine or iodine, and have found that the structures of the products are dependent on the solvent medium; non-protic solvents lead to the expected o-halogenated diterpenoids whereas protic solvents result in the formation of γ-lactones.

[^0]
Results and discussion

Products from reactions of the diterpenoid manganese complexes 2, 6, 24, and 28 with brominating agents are shown in Table 1. Reaction of tetracarbonyl(methyl 13-acetyl-12-methoxypodocarpa-8,11,13-trien-19-oate- C^{14}, O^{13})manganese (2) [12] with bromine (1 molar equivalent) in CCl_{4} gave the desired 14-bromo derivative 4 as an inseparable mixture ($2: 3$) with the ketone 3 , while α-halogenation in the side-chain gave the 13 -(2-bromoacetyl)derivative 5 [13]. A mixture ($1: 1$) of diastereoisomers of the unstable γ-lactone 15 was also isolated.

(1)
)

$$
\begin{aligned}
& \text { (6: } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{2}=\mathrm{COMe}, \mathrm{R}^{3}=\mathrm{Mn}(\mathrm{CO})_{4} \\
& \text { 7: } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{2}=\mathrm{COMe}, \mathrm{R}^{3}=\mathrm{H} \\
& \text { 8: } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{2}=\mathrm{COMe}, \mathrm{R}^{3}=\mathrm{Br} \\
& \text { 9: } \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Mc}, \mathrm{R}^{2}=\mathrm{COMe}, \mathrm{R}^{3}=\mathrm{I} \\
& \text { 10: } \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{COCH}_{2} \mathrm{I}, \mathrm{R}^{3}=\mathrm{H} \\
& \text { 11: } \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{2}=\mathrm{COMe}^{2} \mathrm{R}^{3}=\mathrm{I} \\
& \text { 12: } \left.\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Mc}, \mathrm{R}^{2}=\mathrm{COMe}, \mathrm{R}^{3}=\mathrm{OAc}\right)
\end{aligned}
$$

(13: $\mathrm{R}^{1}=\mathrm{COMe}, \mathrm{R}^{2}=\mathrm{I}$
14: $\mathrm{R}^{1}=\mathrm{COCH}_{2} \mathrm{I}, \mathrm{R}^{2}=\mathrm{H}$)
Routes for the formation of the isolated compounds are proposed in Scheme 1. Formation of the expected 14-bromo derivative 4 from reaction of bromine with the tetracarbonylmanganese complex 2 also would have formed a half-molar equivalent of $\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{Br}\right]_{2}$ (Path A). Bromination at manganese followed by carbonyl insertion would give the 13 -acetyl-14-bromoacyl intermediate (i) which

(17: $\mathrm{R}^{1}=\mathrm{OEt}, \mathrm{R}^{\mathbf{2}}=\mathrm{Me}$ 18: $R^{\mathbf{1}}=\mathrm{H}, \mathbf{R}^{\mathbf{2}} \boldsymbol{m e}$)

(19: $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OMe}$
20: $\mathbf{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{Me}$
21: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{\mathbf{2}}=\mathrm{Me}, \mathrm{R}^{\mathbf{3}}=\mathrm{OMe}$
22: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{Me}$)

(23)
can cyclise with loss of HBr to give the diterpenoid tetraene lactone intermediate (ii) [12] (Path B, Scheme 1). This intermediate may react either with water to form a diastereoisomeric mixture of the hydroxy derivatives 16 or with bromine to form the dibromo analogues (vii). Since neither 16 nor vii were isolated, either this sequence does not occur, or the adducts revert to the vinyl phthalide (ii). However, if the acetyl group of the tetracarbonylmanganese complex 2 brominates to form intermediate iii (Path C, Scheme 1) then a similar carbonyl insertion as above followed by cyclisation gives the brominated tetraene lactone intermediate (v) which leads to the observed bromohydrin 15. Furthermore, reaction of iii with HBr leads directly to 5. An alternative route (Path D) involves reaction of the complex 2 with HBr to form the free ketone 3 which then gives 5 .

Table 1
Products from reactions of complexes with brominating reagents. Products (bold numbers) in relevant proportions

Complex 2 with:	3	4	5	15	16	17	19	20
$\mathrm{Br}_{2} / \mathrm{CCl}_{4}$	16	20	17	18	-	-	-	
$\mathrm{NBS} / \mathrm{CCl}_{4}$	29	55	-	-	-	-	-	-
$\mathrm{Br}_{2} / \mathrm{MeOH}$	12	3	-	-	16	-	23	34
NBS/MeOH	22	-	-	-	-	17	22	16
Complex 6 with:	7	8	21	22				
$\mathrm{NBS} / \mathrm{CCl}_{4}$	4	91	-	-				
$\mathrm{Br}_{2} / \mathrm{MeOH}$	2	7	32	31				
Complex 24 with:	25	26						
NBS $/ \mathrm{CCl}_{4}$	10	56						
Complex 28 with:	29	30	31	32	33	34	35	41
$\mathrm{Br}_{2} / \mathrm{MeOH}$	55	6	17	-	-	-	-	-
$\mathrm{Br}_{2} / \mathrm{CCl}_{4}$	-	3	-	46	-	33	-	-
$\mathrm{NBS} / \mathrm{CCl}_{4}$	-	-	-	-	31	-	49	4, 6

In an attempt to promote the formation of the methylene lactone intermediate (ii) and subsequently to capture it preferentially with solvent, the bromination was repeated in methanol, which afforded a mixture ($3: 1$) of the ketone 3 (12%) and the 14 -bromo derivative 4 (3\%), and the diastereoisomeric 1 -methoxy γ-lactone derivatives 19 (23%) and 20 (34\%). Since the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data for these lactones were very similar, the configuration of 19 was established by X-ray

(24: $\mathrm{R}=\mathrm{Mn}(\mathrm{CO})_{4}$
25: $\mathrm{R}=\mathrm{H}$
26: $R=B r$
27: $R=1$)

(42)

36: $R^{1}=H . R^{2}=I, R^{3}=R^{4}=H$
37: $\mathbf{R}^{1}=H, R^{2}=R^{\mathbf{3}}=I, R^{4}=H$
38: $R^{1}=H, R^{2}=I, R^{3}=H, R^{4}=1$
39: $\mathbf{R}^{1}=1 C_{2}, R^{2}=R^{3}=R^{4}=H$
40: $\mathbf{R}^{1}=\mathbf{C O M e}, \mathbf{R}^{2}=\mathrm{OAC}, \mathbf{R}^{3}=\mathbf{R}^{4}=\mathrm{H}$)

(2)
(iii)
(5)

(ii)

Scheme 1.
diffraction (Fig. 1), from which the stereochemistry of $\mathbf{2 0}$ followed directly. Also isolated (6%) was a single diastereoisomer of the 1-hydroxy analogue 16 which showed broad absorption at $3376(\mathrm{OH})$ in the IR spectrum as well as carbonyl maxima at 1766 (γ-lactone) and $1725 \mathrm{~cm}^{-1}$ (ester). A more polar fraction (10%) consisted of a mixture ($1: 1$) of both diastereoisomers of 16.

When this reaction was repeated in a mixture of methanol and cthanol, a mixture ($1: 1$) consisting of the two diastereoisomers of the 1 -ethoxy derivatives 17 (23%) was isolated, in addition to the above products. A diastereoisomeric mixture ($1: 1$) of the derived benzylic alcohol 23 (3\%) was also formed. The presence of the $4-\mathrm{OH}$ group and the γ-lactone was confirmed by the absorption bands at 3416 and $1747 \mathrm{~cm}^{-1}$ in the IR spectrum. In the ${ }^{1} \mathrm{H}$ NMR spectrum the signals due to the benzylic hydrogen at $\mathrm{C}(4)$ of the two isomers were observed at 5.54 and 5.56 (dd, J $9.5,3.0 \mathrm{~Hz}$), and the OH resonances were observed as singlets at 8.94 and 8.96 ppm . Two new stereogenic centres have been introduced in 23 , one at $\mathrm{C}(1)$ and the other at $\mathrm{C}(4)$. Since the lactone 17 already consisted of two diastereoisomers about $\mathrm{C}(1)$, the stereochemistry at $\mathrm{C}(4)$ in $\mathbf{2 3}$ was the same for both isomers. It has been

Fig. 1. Configuration of 19.
reported [14-16] that when $\mathrm{H}(7)$ is axial its ${ }^{1} \mathrm{H}$ NMR signal has a halfwidth of 15 Hz , whereas when it is equatorial $W_{1 / 2}$ is $6-10 \mathrm{~Hz}$. The coupling constants for the signal due to $\mathrm{H}(4)$ indicated an axial hydrogen, the alcohol therefore being assigned as the equatorial isomer. The hydroxy lactones 23 arise via addition of ethanol across the double bond of the methylene intermediate (i) to give 17, followed by benzylic oxidation with Br_{2} [13].

An alternative source of bromine is N-bromosuccinimide (NBS). This reagent reacts rapidly with HBr to generate bromine in low concentration, and therefore could potentially minimise or prevent formation of both the ketone 3 and the 13-bromoacetyl derivative 5. Although reaction of 2 with N -bromosuccinimide in refluxing CCl_{4} gave the highest yield (55%) of the 14 -bromo derivative 4,3 was also recovered (29%). The use of MeOH as solvent afforded 3 (22%), the 1-methoxy lactones 19 (22%) and $20(16 \%)$, and the 1-methyl lactone $18(17 \%)$ as a mixture of diastereoisomers about $\mathrm{C}(1)$. Formation of the mixture of lactones 18 via a pathway analogous to that proposed for the formation of the alkoxy lactones requires the net addition of dihydrogen across the exocyclic double bond of the intermediate ii (Scheme 1). Although the reducing agent is not known, one possibility is a manganese hydride which could displace ${ }^{-}$OR from the alkoxy lactones 19 or 20.

Whereas reaction of the 13-acetyl-19-methoxymethyltetracarbonyimanganese complex 6 with $\mathrm{Br}_{2} / \mathrm{MeOH}$ gave the 14-bromo derivative 8 and the diastereoisomeric γ-methoxy lactones 21 and 22, NBS/ CCl_{4} gave only 7 (4\%) and the 14-bromo derivative 8 (91%). Similarly, the 7 -oxo-13-methoxycarbonyl complex 24 reacted with the latter reagent to afford $25(10 \%)$ and $26(56 \%)$. Reaction of the 7-oxo complex 28 with $\mathrm{Br}_{2} / \mathrm{MeOH}$ afforded not only the bromoditerpenoids 29 [13] (55%) and $30(6 \%)$, but also the 13-bromo derivative 31 [12] of the starting complex. Assignment of the stereochemistry in the $6 \alpha, 14$-dibromide 30 was based
on literature data [17-20] for the monobrominated analogue 32. Thus the $18-\mathrm{Me}$ and $20-\mathrm{Me}$ resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum of 30 were observed at 1.52 and 0.88 ppm , respectively, in close agreement with the chemical shift values reported [17] for 32. The $\mathrm{H}(6)$ resonance was observed as a doublet $(J 6.3 \mathrm{~Hz})$ at 5.71 ppm , consistent with the bromine in the α configuration [18].

The 14-bromo derivative 35 (49\%) and two separable rotamers of the dimer 41 $(4 \%, 6 \%)$ were included in the products from treatment of 28 with NBS $/ \mathrm{CCl}_{4}$. Both atropisomers of 41 gave accurate mass measurements for their molecular ions that were correct for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{8}$, and showed carbonyl absorptions in their IR spectra at 1724 (ester) and $1678 \mathrm{~cm}^{-1}$ (ketone). The observation of all the aromatic hydrogen resonances as meta coupled doublets in their ${ }^{1} \mathrm{H}$ NMR spectra defined each rotameric dimer as being $\mathrm{C}(14)-\mathrm{C}(14)$ bonded. The pathway by which the

$\mathrm{HBr} \prod_{-\frac{1}{2}\left[\mathrm{Mn}(\mathrm{CO})_{4}\right] \mathrm{Br}_{2}}$

(28)

(32)

(34)

(i)
(41)

Scheme 2.

Table 2
Products from reactions of complexes with iodinating reagents. Products (bold numbers) in relevant proportions

Complex 2 with:	3	9	10	13	14		
$\mathrm{ICl} / \mathrm{CCl}_{4}$	17	50	-	-	-		
$\mathrm{ICl}_{3} / \mathrm{CCl}_{4}$	9	32	5	14	5		
$\mathrm{NIS} / \mathrm{CCl}_{4}$	31	68	-	-	-		
Complex 6 with:	7	11					
$\mathrm{NIS} / \mathrm{CCl}_{4}$	12	79					
Complex 24 with:	25	27					
$\mathrm{NIS} / \mathrm{CCl}_{4}$	14	61					
Complex 28 with:	28	33	36	37	38	39	41
$\mathrm{ICl} / \mathrm{CCl}_{4}$	17	26	16	2	-	-	-
$\mathrm{ICl}_{3} / \mathrm{CCl}_{4}$	-	22	13	trace	3	14	-
$\mathrm{NIS} / \mathrm{CCl}_{4}$	-	17	62	-	-	-	1,2

brominated derivatives of 28 are proposed to form is shown in Scheme 2. Reductive cleavage of the $\mathrm{C}-\mathrm{Mn}$ bond of the tetracarbonyl complex 28 by reaction with HBr to form the ketone 33 is unexceptional, and bromination of $\mathbf{3 3}$ to form the 6α-bromo derivative 32 has been reported [18,20]. Reaction of the complex 28 with bromine at $\mathrm{C}(13)$ results in formation of the 13 -bromo derivative 31 which can then also cleave reductively to form 29. Further bromination at $C(6)$ is expected to give the dibromide 34 . Since the 6α-bromo-14-tetracarbonylmanganese complex was not detected, it appears that bromination at $C(6)$ does not occur when the 7 -oxo group is ligated to manganese. Alternatively, as was the intention of this work, the manganese can be substituted by bromine, forming the 14-bromo derivative 35, which can react further to form the $6 \alpha, 14$-dibromide 30. Formation of 30 and 35 is clearly favoured by the use of NBS/CCl ${ }_{4}$. Formation of the dimers 41 is assumed to be the result of coupling between two radicals of type i which may also be an intermediate in the formation of the 14-bromo derivative 35 , whose yield was highest using NBS $/ \mathrm{CCl}_{4}$.

Reaction of complex 2 with iodine monochloride in CCl_{4} was slower than bromination, affording (Table 2) the 14 -iodo derivative 9 (50%) after 94 h . The ${ }^{13} \mathrm{C}$ NMR spectrum of 9 showed the signal due to $\mathrm{C}(14)$ at 98.7 ppm 32 ppm upfield of the corresponding signal in 3 . Reaction of 2 with iodine trichloride, expected to be a more reactive halogenating reagent, afforded (Table 2) the 14 -iodide 9 (32%), its 11-chloro analogue 13 (14\%), the 13-(2-iodoacetyl) derivative 10 (5%), and its 11 -chloro analogue 14 (5\%). The 11-chloro-14-iodo derivative 13 gave accurate mass measurements of its isotopomeric molecular ions that were correct for $\mathrm{C}_{21} \mathrm{H}_{26}{ }^{37} \mathrm{ClIO}_{4}$ and $\mathrm{C}_{21} \mathrm{H}_{26}{ }^{35} \mathrm{ClIO}_{4}$, and showed carbonyl absorptions in the IR
spectrum at 1725 (ester) and $1715 \mathrm{~cm}^{-1}$ (ketone). The NMR spectra showed that ring C was fully substituted (chlorinated and iodinated), the regiochemistry being assigned as 13 by comparison of the observed carbon chemical shifts with those predicted for either 11 -chloro-14-iodo or 14-chloro-11-iodo substitution, closer agreement being observed for the former regioisomer. The 14 -iodo derivative 9 is assumed to be the precursor of the 11 -chloro-14-iodide 13. The mass spectrum of 14 showed molecular ions at $m / z 506$ and 504 , as required for $\mathrm{C}_{21} \mathrm{H}_{26}{ }^{37} \mathrm{ClIO}_{4}$ and $\mathrm{C}_{21} \mathrm{H}_{26}{ }^{35} \mathrm{ClIO}_{4}$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed doublets ($J 10.6 \mathrm{~Hz}$) at 4.45 and 4.53 ppm which were assigned to the iodoacetyl group on the basis of their similarity with the corresponding signals in the spectrum of $\mathbf{1 0}$. The only aromatic hydrogen resonance, a singlet at 7.30 ppm , was consistent with the shift expected for $\mathrm{H}(14)$, and the chlorine substituent was therefore placed at $\mathrm{C}(11)$.

As was the case with NBS for bromination at $\mathrm{C}(14), N$-iodosuccinimide (NIS) in refluxing CCl_{4} gave the highest yields of the 14-iodo derivatives, affording 9 (68%) from 2, 27 (61%) from 24, and 36 (62%) from 28 . Treatment of the latter complex with $\mathrm{ICl} / \mathrm{CCl}_{4}$ also gave the 6β, 14-diiodide 37 while $\mathrm{ICl}_{3} / \mathrm{CCl}_{4}$ afforded, in a faster reaction, the stereoisomer 38 (3\%) [18,21] and the 13 -iodo dichloride 39. Aromatic quaternary carbon resonances due to 39 were observed at $121.6,124.8$, 155.3 , and 159.2 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum, the latter being consistent with those expected for $C(9)$ and $C(12)$, leaving the two upfield resonances to be assigned to $C(8)$ and $C(13)$. Although the mass spectrum of this trivalent iodine compound did not show the expected isotopomeric molecular ions at $m / z 512 /$ $514 / 516 / 518$, the highest mass ion was observed at $m / z 442$ as expected for $M^{+}-2 \mathrm{Cl}$. Clearly, however, this derivative was not simply the univalent 13 -iodo analogue as the chemical shift of $\mathrm{C}(13)$ in such a compound would be about 95 ppm. Although ICl_{3} is known to act also as a chlorinating agent [22,23] there was no evidence for the presence of a 14 -chloride.

A number of oxidising agents, for example, mercury(II) trifluoroacetate, hydrogen peroxide, or a peroxy acid, have been used to oxygenate ortho metallated complexes [24-31]. The tetracarbonyimanganese complexes of acetophenone and of an anthraquinone react with lead tetraacetate to form ortho acetoxy-demetallated products [32], and the formation of arylethyl or arylmethyl acetates via organo-mercury, -palladium, and -lead intermediates has been reported [33,34]. Of relevance to the present work, podocarpic acid has been converted into the 14-hydroxy derivative 42 in low yield [35], and an organochromium-based procedure has been developed for the regioselective hydroxylation of ring-C aromatic diterpenoids [36]. In an attempt to achieve oxidation at $\mathrm{C}(14)$ of the diterpenoid 3 via insertion of oxygen into a $\mathrm{C}-\mathrm{Mn}$ bond, the tetracarbonyl complex 2 was treated with (a) trimethoxyborane in MeCN , (b) m - CPBA in CHCl_{3}, or (c) oxodiperoxymolybdenum(pyridine)(hexamethylphosphoric triamide) (MoOPH) in THF, but only 2 and decomplexed ketone 3 were recovered. Reaction of 2 with lead tetraacetate in THF at room temperature gave 2 (2%), 3 (75%), and low yields of the oxidized products $12(4 \%)$, and $40(7 \%)$. Accurate mass measurement of the molecular ion in the mass spectrum of the 14 -acetoxy derivative 12 was correct for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$, the base peak at $\mathrm{m} / \mathrm{z} 360$ being due to loss of ketene. Carbonyl bands occurred at 1768 (acetoxy), 1724 (methoxycarbonyl), and $1697 \mathrm{~cm}^{-1}$ (acetyl) in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum showed only one aromatic hydrogen resonance [6.74 ppm, $\mathrm{H}(11)$] and confirmed that substitution had occurred at $\mathrm{C}(14)$.

The acetoxy methyl group resonated at 2.24 whereas the signal due to the acetyl methyl group occurred at 2.47 ppm . The doublets of doublets due to (H 6$)_{2}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of 40 located the additional carbonyl group at $\mathrm{C}(7)$. The 14-acetoxy derivative 12 forms presumably by a radical pathway. Benzylic oxidation with lead tetraacetate, which would lead to 40, has been reported [37].

We have successfully reacted a number of diterpenoid-derived tetracarbonylmanganese complexes with electrophilic halogens and have isolated 14-bromo and 14 -iodo diterpenoids in moderate to high yields. These compounds allow further investigation of annulation reactions via Heck-type olefinations [38].

Experimental

General experimental details are presented elsewhere [39,40]. High field ${ }^{1} \mathrm{H}$ NMR spectra were determined at 400.134 MHz on a Bruker AM400 instrument operating at 9.2 Tesla. Multiplicities were determined from DEPT spectra.

Reactions of tetracarbonyl(methyl 13-acetyl-12-methoxypodocarpa-8,11,13-trien-19-oate- $\mathrm{C}^{14}, \mathrm{O}^{13}$)manganese (2) with electrophilic halogen
(a) With Br_{2} in CCl_{4}. Bromine ($20 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(0.5 \mathrm{ml})$ was added dropwise to $2(65 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(1.5 \mathrm{ml})$ at room temperature and the mixture was stirred for 40 min . Workup and PLC gave (i) methyl 13-(2-bromoace-tyl)-12-methoxypodocarpa-8,11,13-trien-19-oate (5) ($9 \mathrm{mg}, 17 \%$) which crystallised from EtOH as needles, m.p. $149-151^{\circ} \mathrm{C}$ (lit. [13] $150.5-152^{\circ} \mathrm{C}$); (ii) a mixture ($2: 3$) (19 mg) of methyl 13-acetyl-12-methoxypodocarpa-8,11,13-trien-19-oate (3) (16\%) and methyl 13-acetyl-14-bromo-12-methoxypodocarpa-8,11,13-trien-19-oate (4) (20\%) [4: ${ }^{1} \mathrm{H}$ NMR: $\delta 1.05$ (s, H(20) $)_{3}$; 1.28 (s, H(18) $)_{3}$); 2.49 (s, 13-COMe); 3.67 (s, 19-OMe); 3.77 (s, 12-OMe); 6.81 (s, H(11)). ${ }^{13} \mathrm{C}$ NMR: $\delta 19.5, \mathrm{C}(2) ; 20.7, \mathrm{C}(6) ; 22.7$, $\mathrm{C}(20)$; 28.3, C(18); 31.4, 13-COMe; 32.1, C(7); 37.0, C(3); 39.2, C(10); 39.7, C(1); 43.9, C(4); 51.3, 19-OMe; 51.8, C(5); 55.8, 12-OMe; 107.6, C(11); 120.3, 127.6, 131.2 (C(8), C(13), C(14)); 151.2, C(9); 153.9, C(12); 177.5, C(19); 202.8, 13-COMe]; and (iii) a mixture ($1: 1$) ($11 \mathrm{mg}, 18 \%$) of two diastereoisomers of methyl [$5 \mathrm{a} R$ ($1 \zeta, 5 \mathrm{a} \alpha, 6 \beta, 9 \mathrm{a} \beta$)]-1-bromomethyl-1-hydroxy-11-methoxy-6,9a-dimethyl-4,5,5a,6,7,-8,9,9a-octahydrophenanthro[1,2-c]furan-3(1H)-one-6-carboxylate (15). IR $\nu_{\max }$: $3387(\mathrm{OH}), 1769$ (ester CO), $1724 \mathrm{~cm}^{-1}$ (ester CO). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.05,1.08$ (s, 9a-Me, $9 \mathrm{a}-\mathrm{Me}^{\prime}$); 1.29 (s, 6-Me, 6-Me'); 2.80 ($\mathrm{d} \times \mathrm{d} \times \mathrm{d}, ~ J ~ 16.2,14.2,6.9 \mathrm{~Hz}$, $\left.\mathrm{H}(4 \mathrm{ax}), \mathrm{H}(4 \mathrm{ax})^{\prime}\right) ; 3.53$ (bd $\times \mathrm{d}, J 16.2,5.0 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{eq}), \mathrm{H}(4 \mathrm{eq})$); 3.78, 4.20 (d, J $10.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2} \mathrm{Br}, 1-\mathrm{CH}_{2} \mathrm{Br}^{\prime}$); 3.90 (s, $11-\mathrm{OMe}, 11-\mathrm{OMe}^{\prime}$); 3.67 (s, $6-\mathrm{CO}_{2} \mathrm{Me}$, $6-\mathrm{CO}_{2} \mathrm{Me}^{\prime}$); 4.21 (bs, 1-OH, 1- OH^{\prime}); 7.06, 7.07 (s, H(10), H(10)'). MS: m / z 468/466 (3/3, M^{+}); 450/448 (3/3, M-H2O); 386 (100, M - HBr); 369 (21, $386-\mathrm{OH}$); 353 (41, $369-\mathrm{H}_{2} \mathrm{O}$ - Me); 327 (28); 311 (36); 394 (21); 255 (20); 128 (27); 115 (28); 43 (56).
(b) With Br_{2} in MeOH . Bromine ($63 \mathrm{mg}, 0.39 \mathrm{mmol}$) in anhydrous MeOH (1 ml) was added to $2(0.20 \mathrm{~g}, 0.39 \mathrm{mmol})$ in MeOH (5 ml) and the mixture was stirred at room temperature for 10 min . Workup and PLC gave (i) a mixture ($3: 1$) (22 mg) of 3 (12%) and 4 (3\%); (ii) methyl $[1 R$-($1 \alpha, 5 \mathrm{a} \alpha, 6 \beta, 9 \mathrm{a} \beta$)]-1,11-dimethoxy-1,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydrophenanthro[1,2-c]furan-3(1 H)-one-6carboxylate (19) ($39 \mathrm{mg}, 23 \%$) which crystallised from MeOH as plates, m.p. $165-190^{\circ} \mathrm{C}$ (dec) [Anal. Found: C, $68.4 ; \mathrm{H}, 7.6 \% . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$ calc.: C, $68.7 ; \mathrm{H}, 7.5 \%$. Found: $M^{+}, 402.2048 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$ calc.: $M, 402.2042$. IR: $\nu_{\max } 1760$ (lactone CO),

1725 (ester CO), 1621, 1494, $1464 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.08$ (s, 9a-Me); 1.10 ($\mathrm{t} \times \mathrm{d}, J 13.5,4.2 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})$); 1.29 (s, 6-Me); 1.43 ($\mathrm{t} \times \mathrm{d}, J 13.2,4.0 \mathrm{~Hz}, \mathrm{H}(9 \mathrm{ax})$); $1.56(\mathrm{~d} \times \mathrm{d}, J 12.3,1.4 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{a})) ; 1.66(\mathrm{~d} \times \mathrm{p}, J 14.2,3.1 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{eq})) ; 1.85(\mathrm{~s}$, $1-\mathrm{Me}) ; 1.88(\mathrm{q} \times \mathrm{d}, J 13.7,5.3 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{ax})) ; 2.03(\mathrm{q} \times \mathrm{t}, J 14.0,3.6 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax})$); $2.22-2.32$ (m, H(5eq), H(7eq), H(9eq)); $2.83(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 18.6,12.5,6.8 \mathrm{~Hz}$, H(4ax)); 3.08 (s, 1-OMe); 3.52 (bd $\times \mathrm{d}, J 18.6,4.5 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{eq})$); 3.68 (s, $6-\mathrm{CO}_{2} \mathrm{Me}$); 3.88 (s, 11-OMe); 7.04 (s, H(10)). ${ }^{13}$ C NMR: 19.9, C(8); 20.0, C(5); 22.9, 9a-Me; 23.9, 1-Me; 27.2, C(4); 28.4, 6-Me; 37.4, C(7); 39.4, C(9a); 39.8, C(9); 43.9, C(6); 51.35, 51.38, 1-OMe, $6-\mathrm{CO}_{2} \mathrm{Me}$; 52.0, C(5a); 55.6, 11-OMe; 107.0, $\mathrm{C}(1) ; 113.6$, C(10); 125.9, C(11а); 128.7, C(3b); 132.5, C(3a); 152.5, C(9b); 153.3, C(11); 168.3, $\mathrm{C}(3)$; 177.7, 6-CO $2 \mathrm{Me} . \mathrm{MS}: m / z 402\left(20, M^{+}\right), 387(16, M-\mathrm{Me}), 370(100$, $M-\mathrm{MeOH}$), 355 ($16,370-\mathrm{Me}$), 310 ($36,370-\mathrm{HCO}_{2} \mathrm{Me}$), 295 ($43,310-\mathrm{Me}$), 257 (26), 241 (31), 69 (12), 43 (14)]; (iii) methyl [$1 S$-($1 \alpha, 5 \mathrm{a} \beta, 6 \alpha, 9 \mathrm{a} \alpha)$]-1,11-di-methoxy-1,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydrophenanthro[1,2-c]furan-3(1H)-one-6-carboxylate (20) ($56 \mathrm{mg}, 34 \%$) which crystallised from MeOH as plates, m.p. $193-208^{\circ} \mathrm{C}$ (dec) [Anal. Found: C, $68.3 ; \mathrm{H}, 7.4 \% . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$ calc.: C, $68.7 ; \mathrm{H}, 7.5 \%$. Found: M^{+}, 402.2041. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$ calc.: $M, 402.2042$. IR: $\nu_{\max } 1760$ (lactone CO), 1724 (ester CO), 1621, 1494, $1464 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.07$ (s, 9a-Me); 1.10 ($\mathrm{t} \times \mathrm{d}, J 13.6,4.2 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})$); 1.28 (s, 6-Me); 1.41 ($\mathrm{t} \times \mathrm{d}, J 13.2,4.0 \mathrm{~Hz}, \mathrm{H}(9 \mathrm{ax})$); $1.52(\mathrm{~d} \times \mathrm{d}, J 12.3,1.3 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{a})) ; 1.66(\mathrm{~d} \times \mathrm{p}, J 14.2,2.9 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{eq})) ; 1.82$ (s, (1-Me)); 1.91 ($\mathrm{q} \times \mathrm{d}, J 13.8,5.3 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{ax})$); $2.02(\mathrm{q} \times \mathrm{t}, J 13.9,3.7 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax})$); 2.21-2.30 (m, H(5eq), H(7eq), H(9eq)); $2.80(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 18.6,12.5,6.5 \mathrm{~Hz}$, H(4ax)); 3.09 (s, 1-OMe); 3.53 (bd $\times \mathrm{d}, J 18.4,4.2 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{eq})$); 3.66 (s, $6-\mathrm{CO}_{2} \mathrm{Me}$); 3.87 (s, 11-OMe); 7.04 (s, H(10)). ${ }^{13}$ C NMR: 19.96, O(8); 20.03, C(5); 22.9, 9a-Me; 23.8, 1-Me; 27.3, C(4); 28.4, 6-Me; 37.4, C(7); 39.3, C(9a); 39.8, C(9); 43.9, C(6); $51.3,51.4,1-\mathrm{OMe}, 6-\mathrm{CO}_{2} \mathrm{Me}$; 52.1, C(5a); 55.6, 11-OMe; 107.0, C(1); 113.6, C(10); 125.8, C(11a); 128.6, C(3b); 132.4, C(3a); 152.4, C(9b); 153.3, C(11); 168.2, C(3); 177.7, 6-CO2 Me. MS: $m / z 402\left(20, M^{+}\right), 387(16, M-\mathrm{Me}), 370(100, M-\mathrm{MeOH})$, 355 ($18,370-\mathrm{Me}$), 310 ($32,370-\mathrm{HCO}_{2} \mathrm{Me}$), 295 ($40,310-\mathrm{Me}$), 257 (22), 241 (30), 69 (16), 43 (20)]; (iv) one diastereoisomer of methyl [$5 \mathrm{a} R-(1 \zeta, 5 \mathrm{a} \alpha, 6 \beta, 9 \mathrm{a} \beta)$]-1-hydroxy-11-methoxy-1,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydrophenanthro[1,2c furan- $3(1 H)$-one-6-carboxylate (16) ($10 \mathrm{mg}, 6 \%$) which crystallised from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ as sheets, m.p. $183-190^{\circ} \mathrm{C}$ (dec) [Found: $M^{+}, 388.1885 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ calc.: $M, 388.1886$. IR: $\nu_{\max } 3376(\mathrm{OH}), 1766$ (lactone CO), 1725 (ester CO), 1622, $1495,1465 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.08(\mathrm{~s}, 9 \mathrm{a}-\mathrm{Me}) ; 1.09(\mathrm{t} \times \mathrm{d}, J 13.6,4.2 \mathrm{~Hz}$, H(7ax)); 1.29 (s, 6-Me); 1.41 (t $\times \mathrm{d}, J 13.2,4.0 \mathrm{~Hz}, \mathrm{H}(9 \mathrm{ax})$); 1.52 ($\mathrm{d} \times \mathrm{d}, J 12.3,1.3$ $\mathrm{Hz}, \mathrm{H}(5 \mathrm{a})$); 1.67 ($\mathrm{d} \times \mathrm{p}, J 14.2,3.0 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{eq})$); 1.88 (s, 1-Me); 1.83-1.95 (m, $\mathrm{H}(5 \mathrm{ax})$); $2.03(\mathrm{q} \times \mathrm{t}, J$ 13.8, $3.9 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax}))$; 2.23-2.31 (m, H(5eq), H(7eq), $\mathrm{H}(9 \mathrm{eq})$); $2.80(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 18.5,12.5,6.5 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{ax})) ; 3.51(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 18.4,5.4$, $1.2 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{eq})$); 3.67 (s, 6-CO $\mathrm{Cl}_{2} \mathrm{Me}$); 3.90 (s, 11-OMe); 7.06 (s, H(10)); 8.56 (s, 1-OH). ${ }^{13}$ C NMR: 19.9, C(8); 20.0, C(5); 22.9, 9a-Me; 24.7, 1-Me; 27.1, C(4); 28.4, $6-\mathrm{Me} ; 37.4, \mathrm{C}(7) ; 39.3, \mathrm{C}(9 \mathrm{a}) ; 39.8, \mathrm{C}(9)$; 43.9, C(6); 51.4, 6-CO 2 Me ; 52.1, C(5a); 55.7, 11-OMe; 103.5, C(1); 114.0, C(10); 124.8, C(11a); 128.5, C(3b); 134.9, C(3a); 152.4, C(9b); 153.3, C(11); 168.2, C(3); 177.7, 6-CO ${ }_{2} \mathrm{Me} . \mathrm{MS}: m / z 388\left(19, M^{+}\right)$, 370 ($100, M-\mathrm{H}_{2} \mathrm{O}$), 355 ($24,370-\mathrm{Me}$), 310 ($57,370-\mathrm{HCO}_{2} \mathrm{Me}$), 295 (43, $310-\mathrm{Me}), 241(40), 43(20)]$; and (v) a mixture ($1: 1$) ($16 \mathrm{mg}, 10 \%$) of the two $\mathrm{C}(1)$ diastereoisomers of 16 as a clear oil. Found: $M^{+}, 388.1887 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ calc.: M, 388.1886. IR: $\nu_{\max } 3423(\mathrm{OH}), 1758$ (lactone CO), $1727 \mathrm{~cm}^{-1}$ (ester CO). The other
diastereoisomer: ${ }^{1} \mathrm{H}$ NMR: $\delta 1.03$ (s, 9a-Me); 1.06-1.11 (m, H(7ax)); 1.27 (s, 6-Me); 1.32-1.44 (m, H(9ax)); 1.51 (bd, J $10.5 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{a})$); $1.60-1.69$ (m, H(8eq)); 1.80-1.95 (m, H(5ax)); 1.91 (s, 1-Me); 2.00 (q $\times \mathrm{t}, J 13.9,3.5 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax})$); 2.20-2.28 (m, $\mathrm{H}(5 \mathrm{eq}), \mathrm{H}(7 \mathrm{eq}), \mathrm{H}(9 \mathrm{eq})$); 2.71-2.82 (m, H(4ax)); $3.48(\mathrm{bd} \times \mathrm{d}, J 18.2,4.9 \mathrm{~Hz}$, $\mathrm{H}(4 \mathrm{eq})$); 3.65 (s, 6-CO2 Me); 3.89 (s, 11-OMe); 7.04 (s, H(10)). ${ }^{13} \mathrm{C}$ NMR 19.9, C(8); 19.9, C(5); 22.8, 9a-Me; 24.7, 1-Me; 22.1, 27.2, C(4); 28.4, 6-Me; 37.3, C(7); 39.3, $\mathrm{C}(9 \mathrm{a}) ; 39.8, \mathrm{C}(9) ; 43.9, \mathrm{C}(6) ; 51.4,6-\mathrm{CO}_{2} \mathrm{Me} ; 52.1, \mathrm{C}(5 \mathrm{a}) ; 55.7,11-\mathrm{OMe} ; 103.5$, C(1); 114.0, C(10); 124.7, C(11a); 128.5, C(3b); 134.9, C(3a); 152.4, C(9b); 153.2, $\mathrm{C}(11)$; 168.2, C(3); 177.7, 6- $\mathrm{CO}_{2} \mathrm{Me} . \mathrm{MS}: m / z 388$ (17, M^{+}), $370\left(100, M-\mathrm{H}_{2} \mathrm{O}\right.$), 355 ($19,370-\mathrm{Me}$), 310 ($40,370-\mathrm{HCO}_{2} \mathrm{Me}$), 295 ($42,310-\mathrm{Me}$), 241 (35), 83 (81).

When this reaction was repeated in MeOH containing a small amount of EtOH the following were also isolated: (a) a mixture ($1: 1$) ($40 \mathrm{mg}, 23 \%$) of the two diastereoisomers of methyl $[5 \mathrm{a} R-(1 \zeta, 5 \mathrm{a} \alpha, 6 \beta, 9 \mathrm{a} \beta)]$-1-ethoxy-11-methoxy-1,6,9a-tri-methyl-4,5,5a,6,7,8,9,9a-octahydrophenanthro[1,2-c]furan-3(1H)-one-6-carboxylate (17) as a clear oil [Found: $M^{+}, 416.2207 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}$ calc.: M, 416.2199. IR: $\nu_{\max }$ 1760 (lactone CO), 1725 (ester CO), 1620, 1494, $1465 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR: δ $1.07,1.08$ (s, 9a-Me, 9a-Me'); 1.00-1.10 (m, H(7ax), H(7ax)'); 1.14, 1.16 (d $\times \mathrm{d}, J$ $7.0,4.3 \mathrm{~Hz}, 1-\mathrm{OCH}_{2} \mathrm{Me}, 1-\mathrm{OCH}_{2} \mathrm{Me}^{\prime}$); 1.29 (s, $6-\mathrm{Me}, 6-\mathrm{Me}^{\prime}$); 1.38-1.46 (m, H(9ax), H(9ax)'); 1.53, 1.55 (bd, J $\left.11.0 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{a}), \mathrm{H}(5 \mathrm{a})^{\prime}\right) ; 1.66$ (d $\times \mathrm{p}, J 14.2,4.1$ $\left.\mathrm{Hz}, \mathrm{H}(8 \mathrm{eq}), \mathrm{H}(8 \mathrm{eq})^{\prime}\right) ; 1.83,1.85$ (s, 1-Me, $\left.1-\mathrm{Me}^{\prime}\right) ; 1.86-1.95$ (m, H(5ax), H(5ax)'); 2.02 ($\left.\mathrm{q} \times \mathrm{t}, J 13.9,3.6 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax}), \mathrm{H}(8 \mathrm{ax})^{\prime}\right) ; 2.22-2.31$ (m, H(5eq), H(5eq)', $\left.\mathrm{H}(7 \mathrm{eq}), \mathrm{H}(7 \mathrm{eq})^{\prime}, \mathrm{H}(9 \mathrm{eq}), \mathrm{H}(9 \mathrm{eq})^{\prime}\right)$; 2.75-2.87 (m, H(4ax), H(4ax)'); 3.03-3.14, 3.32-3.42 (m, 1-OCH2 $\mathrm{Me}, 1-\mathrm{OCH}_{2} \mathrm{Me}^{\prime}$); 3.46-3.58 (m, H(4eq), H(4eq)'); $3.67(\mathrm{~s}$, $6-\mathrm{CO}_{2} \mathrm{Me}, 6-\mathrm{CO}_{2} \mathrm{Me}^{\prime}$); 3.89 (s, 11-OMe, 11-OMe'); 7.04 (s, $\left.\mathrm{H}(10), \mathrm{H}(10)^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: 15.1, $1-\mathrm{OCH}_{2} \mathrm{Me}, 1-\mathrm{OCH}_{2} \mathrm{Me}^{\prime} ; 19.9, \mathrm{C}(8), \mathrm{C}(8)^{\prime} ; 19.98,20.00, \mathrm{C}(5), \mathrm{C}(5)^{\prime}$; 22.9 , $9 \mathrm{a}-\mathrm{Me}, 9 \mathrm{a}-\mathrm{Me}^{\prime} ; 24.28,24.32,1-\mathrm{Me}, 1-\mathrm{Me}^{\prime} ; 27.2,27.3, \mathrm{C}(4), \mathrm{C}(4)^{\prime} ; 28.4,6-\mathrm{Me}$, 6-Me'; 37.4, C(7), C(7)'; 39.3, C(9a), C(9a)'; 39.81, 39.84, C(9), C(9)'; 43.9, C(6), $\mathrm{C}(6) ; 51.3,6-\mathrm{CO}_{2} \mathrm{Me}, 6-\mathrm{CO}_{2} \mathrm{Me}^{\prime} ; 52.0,52.2, \mathrm{C}(5 \mathrm{a}), \mathrm{C}\left(5 \mathrm{a}^{\prime}\right) ; 55.6,11-\mathrm{OMe}, 11-\mathrm{OMe}^{\prime} ;$ 59.71, $59.74,1-\mathrm{OCH}_{2} \mathrm{Me}, 1-\mathrm{OCH}_{2} \mathrm{Me}^{\prime} ; 106.9, \mathrm{C}(1), \mathrm{C}(1)^{\prime} ; 113.55,113.57, \mathrm{C}(10)$, $\mathrm{C}(10)^{\prime} ; 125.80,125.84, \mathrm{C}(11 \mathrm{a}), \mathrm{C}(11 \mathrm{a})^{\prime} ; 128.6, \mathrm{C}(3 \mathrm{~b}), \mathrm{C}(3 \mathrm{~b})^{\prime} ; 133.2, \mathrm{C}(3 \mathrm{a}), \mathrm{C}(3 \mathrm{a})^{\prime} ;$ 152.4, $\mathrm{C}(9 \mathrm{~b}), \mathrm{C}(9 \mathrm{~b})^{\prime}$; 153.1, $\mathrm{C}(11), \mathrm{C}(11)^{\prime}$; 168.4, $\mathrm{C}(3), \mathrm{C}(3)^{\prime} ; 177.7,6-\mathrm{CO}_{2} \mathrm{Me}$, 6-CO2 $\mathrm{Me}^{\prime} . \mathrm{MS}: m / z 416\left(22, M^{+}\right.$), 401 ($7, M-\mathrm{Me}$), 387 (12, $M-\mathrm{Et}$), 370 (100, $M-\mathrm{EtOH}), 355(15,370-\mathrm{Me}), 310\left(50,370-\mathrm{HCO}_{2} \mathrm{Me}\right), 295(22,310-\mathrm{Me})$, 257 (21), 241 (27), 43 (27)]; and (b) a mixture ($1: 1$) ($6 \mathrm{mg}, 3 \%$) of two diastereoisomers of methyl [$4 S$ - $(1 \zeta, 4 \alpha, 5 \mathrm{a} \beta, 6 \alpha, 9 \mathrm{a} \alpha)$]-1-ethoxy-4-hydroxy-11-methoxy-1,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydrophenanthro[1,2-c]furan-3(1H)-one-6-carboxylate (23) as a clear oil. Found: $M^{+}, 432.2165 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}$ calc.: $M, 432.2148$. IR: $\nu_{\max } 3416(\mathrm{OH}), 1747$ (lactone CO), $1725 \mathrm{~cm}^{-1}$ (ester CO). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.155$, 1.163 (s, 9a-Me, 9a-Me'); 1.307, 1.310 (s, 6-Me, 6-Me'); 1.85, 1.88 (s, 1-Me, 1-Me'); 3.70 (s, $6-\mathrm{CO}_{2} \mathrm{Me}, 6-\mathrm{CO}_{2} \mathrm{Me}^{\prime}$); 3.90 (s, $11-\mathrm{OMc}, 11-\mathrm{OMe}^{\prime}$); $5.54,5.56$ ($\mathrm{d} \times \mathrm{d}, J 8.0$, $\left.3.0 \mathrm{~Hz}, W_{1 / 2}=13 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{ax}), \mathrm{H}(4 \mathrm{ax})^{\prime}\right) ; 7.01\left(\mathrm{~s}, \mathrm{H}(10), \mathrm{H}(10)^{\prime}\right) ; 8.94,8.96(\mathrm{~s}, 4-\mathrm{OH}$, 4-OH'). MS: $m / z 432$ (33, M^{+}), 416 (21, $M-\mathrm{OH}$), 404 (17, $M-\mathrm{CO}$), 385 (46, $M-\mathrm{Et}-\mathrm{H}_{2} \mathrm{O}$), 371 (24), 355 (16), 325 (34), 269 (34), 210 (34), 69 (90), 55 (63), 41 (100).
(c) With NBS in CCl_{4}. A mixture of $2(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ and NBS $(35 \mathrm{mg}$, $0.20 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was heated under reflux under argon for 4.5 h . Workup and PLC gave a mixture ($3: 7$) (67 mg) of 3 (29%) and 4 (55%).
(d) With NBS in MeOH. A mixture of $2(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ and NBS $(35 \mathrm{mg}$, 0.20 mmol) in $\mathrm{MeOH}(5 \mathrm{ml})$ was heated to reflux under argon for 2.5 h . Workup and PLC gave (i) 3 ($15 \mathrm{mg}, 22 \%$); (ii) 19 ($17 \mathrm{mg}, 22 \%$); (iii) 20 ($13 \mathrm{mg}, 16 \%$); and (iv) methyl [5a R-($1 \zeta, 5 \mathrm{a} \alpha, 6 \beta, 9 \mathrm{a} \beta$)]-11-methoxy-1,6,9a-trimethyl-4,5,5a,6,7,8,9,9a-octahydrophenanthro[1,2-c]furan-3(1H)-one-6-carboxylate (18) ($12 \mathrm{mg}, 17 \%$) as a clear oil (Kugelrohr, $160^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$). Anal. Found: C, $71.2 ; \mathrm{H}, 7.6 \% \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}$ calc.: C, $71.0 ; \mathrm{H}, 7.6 \%$. Found: M^{+}, $372.1920 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}$ calc.: M, 372.1878. IR: $\nu_{\max } 1756$ (lactone CO), 1726 (ester CO), 1619, 1495, $1464 \mathrm{~cm}^{-1}$ (C=C). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.069,1.074\left(\mathrm{~s}, 9 \mathrm{a}-\mathrm{Me}, 9 \mathrm{a}-\mathrm{Me}^{\prime}\right) ; 1.09\left(\mathrm{t} \times \mathrm{d}, J 13.6,4.1 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax}), \mathrm{H}(7 \mathrm{ax})^{\prime}\right) ; 1.29$ (s, 6-Me, 6-Me'); 1.36-1.46 (m, H(9ax), H(9ax)'); 1.52, 1.54 (d $\times \mathrm{d}, J 12.5,0.9 \mathrm{~Hz}$, $\left.\mathrm{H}(5 \mathrm{a}), \mathrm{H}(5 \mathrm{a})^{\prime}\right) ; 1.59$ (d, J 6.5 Hz); 1.61 (d, J $\left.6.2 \mathrm{~Hz}, 1-\mathrm{Me}, 1-\mathrm{Me}^{\prime}\right) ; 1.65$ (d $\times \mathrm{p}, J$ $\left.14.2,3.2 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq}), \mathrm{H}(2 \mathrm{eq})^{\prime}\right) ; 1.83-1.98$ (m, H(5ax), H(5ax)'); 2.02 ($\mathrm{q} \times \mathrm{t}, J 13.9$, $\left.3.6 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax}), \mathrm{H}(8 \mathrm{ax})^{\prime}\right) ; 2.22-2.31$ (m, H(5eq), H(5eq)', H(7eq), H(7eq)', H(9eq), $\left.\mathrm{H}(9 \mathrm{eq})^{\prime}\right) ; 2.82\left(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 18.3,12.7,6.5 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{ax}), \mathrm{H}(4 \mathrm{ax})^{\prime}\right) ; 3.55,3.56(\mathrm{bd} \times \mathrm{d}$, J 18.3, $\left.4.6 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{eq}), \mathrm{H}(4 \mathrm{eq})^{\prime}\right) ; 3.67$ (s, $6-\mathrm{CO}_{2} \mathrm{Me}, 6-\mathrm{CO}_{2} \mathrm{Me}^{\prime}$); 3.85 (s, 11-OMe, $11-\mathrm{OMe}^{\prime}$); 5.42, 5.43 (q, J $\left.6.6 \mathrm{~Hz}, \mathrm{H}(1), \mathrm{H}(1)^{\prime}\right) ; 6.99$ (H(10), H(10)'). ${ }^{13} \mathrm{C}$ NMR: 19.1, 19.2, 1-Me, $1-\mathrm{Me}^{\prime} ; 19.9, \mathrm{C}(8), \mathrm{C}(8)^{\prime} ; 20.1, \mathrm{C}(5), \mathrm{C}(5)^{\prime} ; 22.9$, $9 \mathrm{a}-\mathrm{Me}, 9 \mathrm{a}-\mathrm{Me}^{\prime} ;$ 27.0, 27.1, C(4), C(4)', 28.4, 6-Me, 6-Me'; 37.5, C(7), C(7)'; 39.2, C(9a), C(9a)'; 39.89, 39.93, $\mathrm{C}(9), \mathrm{C}(9)^{\prime} ; 43.9, \mathrm{C}(6), \mathrm{C}(6)^{\prime} ; 51.3,6-\mathrm{CO}_{2} \mathrm{Me}, 6-\mathrm{CO}_{2} \mathrm{Me}^{\prime} ; 52.2,52.3$, $\mathrm{C}(5 \mathrm{a}), \mathrm{C}(5 \mathrm{a})^{\prime} ; 55.4,11-\mathrm{OMe}, 11-\mathrm{OMe}^{\prime} ; 75.5,75.6, \mathrm{C}(1), \mathrm{C}(1)^{\prime} ; 112.66,112.69$, $\mathrm{C}(10), \mathrm{C}(10)^{\prime} ; 124.2, \mathrm{C}(11 \mathrm{a}), \mathrm{C}(11 \mathrm{a})^{\prime} ; 128.4, \mathrm{C}(3 \mathrm{~b}), \mathrm{C}(3 \mathrm{~b})^{\prime} ; 137.77,137.83, \mathrm{C}(3 \mathrm{a})$, $\mathrm{C}(3 \mathrm{a})^{\prime} ; 151.17,151.18, \mathrm{C}(9 \mathrm{~b}), \mathrm{C}(9 \mathrm{~b})^{\prime} ; 152.0, \mathrm{C}(11), \mathrm{C}(11)^{\prime} ; 170.7, \mathrm{C}(3), \mathrm{C}(3)^{\prime} ; 177.8$, $6-\mathrm{CO}_{2} \mathrm{Me}, 6-\mathrm{CO}_{2} \mathrm{Me}^{\prime} . \mathrm{MS}: m / z 372$ (100, M^{+}), 297 (70), 243 (15), 55 (30), 41 (48).
(e) With ICl in CCl_{4}. $\quad \mathrm{ICl}(48 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(1 \mathrm{ml})$ was added to 2 ($0.15 \mathrm{~g}, 0.29 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(2 \mathrm{ml})$, and the mixture was stirred at room temperature for 94 h . Workup and PLC gave (i) a mixture (32 mg) of 3 (17%) and 9 (12%); and (ii) methyl 13-acetyl-14-iodo-12-methoxypodocarpa-8,11,13-trien-19-oate (9) ($53 \mathrm{mg}, 38 \%$) which crystallised from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ as rods, m.p. $170-171^{\circ} \mathrm{C}$. Anal. Found: C, 54.1; H, 5.7\%. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{IO}_{4}$ calc.: C, 53.6; H, 5.7\%. IR: $\nu_{\max } 1715$ (ester CO), 1703 (ketone CO), 1590, 1545, 1461, $1446 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: δ 1.04 (s, H(20) $)_{3}$; 1.05 ($\mathrm{t} \times \mathrm{d}, \mathrm{J} 13.5,4.2 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})$); 1.27 (s, H(18) $)_{3}$); 1.34 ($\mathrm{t} \times \mathrm{d}, J$ $13.3,4.0 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})$); 1.43 ($\mathrm{d} \times \mathrm{d}, J 12.5,1.5 \mathrm{~Hz}, \mathrm{H}(5)$); 1.63 ($\mathrm{d} \times \mathrm{p}, J 14.3,2.9 \mathrm{~Hz}$, $\mathrm{H}(2 \mathrm{eq})$); $1.90(\mathrm{q} \times \mathrm{d}, J 13.9,5.6 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})$); $1.99(\mathrm{q} \times \mathrm{t}, J 14.0,3.7 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); 2.19-2.28 (m, H(1eq), H(3eq), H(6eq)); 2.49 (s, 13-COMe); 2.48 ($\times \mathrm{d} \times \mathrm{d}, J 17.0$, $12.6,6.6 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})) ; 2.84$ (J 17.0, 5.5, 1.3 Hz, H(7eq)); 3.66 (s, 19-OMe); 3.75 (s, 12-OMe); 6.84 (s, H(11)). ${ }^{13} \mathrm{C}$ NMR: 20.0, C(2); 21.5, C(6); 22.7, C(20); 28.3, C(18); $30.9,13-\mathrm{COMe} ; 37.3, \mathrm{C}(3) ; 38.1, \mathrm{C}(7) ; 39.2, \mathrm{C}(10) ; 39.8, \mathrm{C}(1) ; 43.9, \mathrm{C}(4) ; 51.3$, 19-OMe; 51.9, C(5); 55.8, 12-OMe; 98.7, C(14); 108.6, C(11); 130.2, C(13); 135.7, $\mathrm{C}(8)$; 150.7, C(9); 153.5, C(12); 177.6, C(19); 204.8, 13-COMe. MS: $m / z 470$ (95, M^{+}), 455 ($100, M-\mathrm{Me}$), 395 (37, $455-\mathrm{HCO}_{2} \mathrm{Me}$), 329 (12).
(f) With ICl_{3} in $\mathrm{CCl}_{4} . \quad \mathrm{ICl}_{3}(69 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was added to 2 ($0.15 \mathrm{~g}, 0.29 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ and the mixture was stirred at room temperature for 24 h . Workup and PLC gave (i) methyl 13-acetyl-11-chloro-14-iodo-12-methoxypodocarpa-8,11,13-trien-19-oate (13) ($21 \mathrm{mg}, 14 \%$) as a clear oil [Found: $M^{+}, 506.0493$ and 504.0539. $\mathrm{C}_{21} \mathrm{H}_{26}{ }^{37,35} \mathrm{ClIO}_{4}$ calc.: $M, 506.0535$ and 504.0564. IR: $\nu_{\max } 1725$ (ester CO), $1715 \mathrm{~cm}^{-1}$ (ketone CO). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.05(\mathrm{t} \times \mathrm{d}, J 13.5,4.2$ $\mathrm{Hz}, \mathrm{H}(1 \mathrm{ax}), \mathrm{H}(3 \mathrm{ax})$); 1.29, 1.31 (s, H(18) $)_{3} \mathrm{H}(20)_{3}$); 1.37 (bd, J $12.0 \mathrm{~Hz}, \mathrm{H}(5)$); 1.57 $(\mathrm{d} \times \mathrm{p}, J 14.6,4.0 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})) ; 1.78(\mathrm{q} \times \mathrm{d}, J 13.6,5.2 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})) ; 1.95(\mathrm{q} \times \mathrm{t}, J$
$14.0,3.7 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})) ; 2.23-2.28$ (m, H(3eq), $\mathrm{H}(6 \mathrm{eq})$); 2.54 (s, 13-COMe); 2.62 (d $\times \mathrm{d} \times \mathrm{d}, J 17.1,12.7,6.4 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})) ; 2.81$ (bd $\times \mathrm{d}, J 17.2,3.9 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); 3.42 , bd, J $13.2 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{eq})$); 3.68 (s, 19-OMe)); 3.74 (s, 12-OMe). ${ }^{13} \mathrm{C}$ NMR: 16.0, C(20); 19.7, C(2); 21.2, C(6); 28.9, C(18); 30.8, 13-COMe; 35.3, C(7); 37.1, C(3); 41.6, C(1); 42.0, C(10); 44.0, C(4); 51.4, 19-OMe; 55.2, C(5); 62.5, 12-OMe; 96.7, C(14); 129.1, C(11); 137.6, C(13); 141.6, C(8); 147.2, C(9); 150.7, C(12); 177.6, C(19); 203.2, 13-COMe. MS: $m / z 506 / 504$ ($33 / 88, M^{+}$), $491 / 489$ ($11 / 26, M-\mathrm{Me}$), 469 (9, $M-\mathrm{Cl}$), 429 (44), 349 (3), 149 (20), 83 (65), 43 (100)]; (ii) a mixture (17 mg) of several components of which only methyl 13-(2-iodoacetyl)-11-chloro-12-methoxy-podocarpa-8,11,13-trien-19-oate (14) (5\%) was identified. [IR: $\nu_{\max } 1725$ (ester CO), $1676 \mathrm{~cm}^{-1}$ (ketone CO). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.29,1.30\left(\mathrm{~s}, \mathrm{H}(18)_{3}, \mathrm{H}(20)_{3}\right) ; 3.68$ (s, 19-OMe); 3.84 (s, 12-OMe); 4.45, 4.53 (d, J $10.6 \mathrm{~Hz}, 13-\mathrm{CH}_{2} \mathrm{I}$); 7.30 (s, H(14)). MS: $m / z 506 / 504\left(1 / 1, M^{+}\right), 330(20), 255(22), 149(18), 94$ (100); (iii) a mixture (1:3) (9 mg) of 3 (2%) and methyl 13-(2-iodoacetyl)-12-methoxypodocarpa-8,11,13-trien-19-oate (10) (5\%) as a clear oil [10: Found: $M^{+\cdot}$, 470.0984. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{IO}_{4}$ calc.: M, 470.0984. IR: $\nu_{\max } 1725$ (ester CO), $1678 \mathrm{~cm}^{-1}$ (ketone CO). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.05$ (s, $\left.\mathrm{H}(20)_{3}\right) ; 1.10(\mathrm{t} \times \mathrm{d}, J 13.4,4.2 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})) ; 1.28\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 1.43(\mathrm{t} \times \mathrm{d}, J 13.3,4.6$ $\mathrm{Hz}, \mathrm{H}(1 \mathrm{ax})) ; 1.52(\mathrm{~d} \times \mathrm{d}, J 12.0,1.6 \mathrm{~Hz}, \mathrm{H}(5)$); $1.66(\mathrm{~d} \times \mathrm{p}, J 14.2,2.8 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})$); $1.88-2.00(\mathrm{~m}, \mathrm{H}(6 \mathrm{ax})$); 2.02 ($\mathrm{q} \times \mathrm{t}, J 13.7,3.6 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); 2.16-2.31 (m, H(1eq), $\mathrm{H}(3 \mathrm{eq}), \mathrm{H}(6 \mathrm{eq})) ; 2.73(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 16.9,12.6,6.1 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})): 2.89(\mathrm{bd} \times \mathrm{d}, J 16.9$, $3.8 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); 3.67 (s, 19-OMe); 3.90 (s, 12-OMe); $4.45,4.50(\mathrm{~d}, J 9.9 \mathrm{~Hz}$, $13-\mathrm{COCH}_{2} \mathrm{I} ; 6.84(\mathrm{~s}, \mathrm{H}(11)) ; 7.54(\mathrm{~s}, \mathrm{H}(14)) .{ }^{13} \mathrm{C}$ NMR: 9.8, 13-COCH${ }_{2} \mathrm{I} ; 19.9$, C(2); 20.9, С(6); 22.8, C(20); 28.5, C(18); 30.9, C(7); 37.5, C(3); 39.3, C(10); 39.2, $\mathrm{C}(1) ; 44.0, \mathrm{C}(4) ; 51.3,19-\mathrm{OMe}$; 52.3 , C(5); 55.6, 12-OMe; 108.5, C(11); 128.3, C(13); 129.1, C(8); 132.4, C(14); 155.5, C(9); 156.9, C(12); 177.7, C(19); 193.4, 13-COCH ${ }_{2} \mathrm{I}$. MS: $m / z 470\left(26, M^{+}\right), 455(27, M-\mathrm{Me}), 396$ ($8, M-\mathrm{CO}_{2} \mathrm{Me}$), 378 (32, $396-\mathrm{H}_{2} \mathrm{O}$)]; and (iv) a mixture (51 mg) of $\mathbf{3}$ (7%) and $10(32 \%)$.
(g) With NIS in CCl_{4}. A mixture of $2(0.10 \mathrm{~g}, 0.20 \mathrm{mmol})$ and NIS ($44 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was heated under reflux under argon for 6.5 h . Workup and PLC gave a mixture (84 mg) of 3 (31%) and 9 (68%).

Reactions of (13-acetyl-12,19-dimethoxypodocarpa-8,11,13-triene- C^{14}, O^{13})tetracarbonylmanganese (6) with electrophilic halogen
(a) With Br_{2} in MeOH . Bromine ($77 \mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{ml}$) was added dropwise to $6(0.24 \mathrm{~g}, 0.48 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$, and the mixture was stirred at room temperature for 10 min . Workup and PLC gave (i) a mixture (14 mg) of 13-acetyl-12,19-dimethoxypodocarpa-8,11,13-triene (7) (2\%) and (8) (7\%); (ii) $[1 R$ - $(1 \alpha, 5 \mathrm{a} \alpha, 6 \beta, 9 \mathrm{a} \beta)]-4,5,5 \mathrm{a}, 6,7,8,9,9 \mathrm{a}$-octahydro-1,11-dimethoxy-6-methoxy-methyl-1,6,9a-trimethylphenanthro[1,2-c]furan-3(1H)-one (21) ($58 \mathrm{mg}, \mathbf{3 1 \%}$) which crystallised from hexanes as needles, m.p. $155-175^{\circ} \mathrm{C}$ (dec) [Anal. Found: C, 71.2; $\mathrm{H}, 8.3 \% . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ calc.: $\mathrm{C}, 71.1 ; \mathrm{H}, 8.3 \%$. IR: $\nu_{\text {max }} 1750$ (lactone CO), 1191, 1114, $1075 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.02(\mathrm{t} \times \mathrm{d}, J 13.6,4.1 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})$); 1.05 (s, $6-\mathrm{Me}) ; 1.23$ (s, 9a-Me); 1.44 (bd, J $12.5 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{a})$); 1.46 (t $\times \mathrm{d}, J 13.1,3.8 \mathrm{~Hz}$, H(9ax)); 1.59-1.70 (m, H(5ax), H(8eq)); 1.75 (q $\times \mathrm{t}, J 13.8,3.1 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax})$); 1.84 (s, 1-Me); 1.90 (bd, J $13.6 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); 2.06 (bd $\times \mathrm{d}, J 13.4,7.7 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{eq})$); 2.17 (bd, $J 12.5 \mathrm{~Hz}, \mathrm{H}(9 \mathrm{eq})$); $2.96(\mathrm{~d} \times \mathrm{d} \times \mathrm{d}, J 18.8,11.7,7.7 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{ax})$); 3.06 (s, 1-OMe); $3.24,3.52$ (d, J $9.1 \mathrm{~Hz}, 6-\mathrm{CH}_{2} \mathrm{OMe}$); 3.33 (s, $6-\mathrm{CH}_{2} \mathrm{OMe}$); 3.41 (bd $\times \mathrm{d}, J 18.8,5.9$ $\mathrm{Hz}, \mathrm{H}(4 \mathrm{eq})$); 3.88 (s, 11-OMe); 7.05 (s, H(10)). ${ }^{13} \mathrm{C}$ NMR: 18.3, C(2); 19.1, C(6);
23.9, 1-Me; 25.7, 9a-Me; 26.4, C(4); 27.6, 6-Me; 35.7, C(7); 38.0, C(9a); 38.7, C(6); $39.4, \mathrm{C}(9)$; 50.6, $\mathrm{C}(5 \mathrm{a}) ; 51.3,1-\mathrm{OMe} ; 55.6,11-\mathrm{OMe} ; 59.4,6-\mathrm{CH}_{2} \mathrm{OMe}$; 75.7, $6-\mathrm{CH}_{2} \mathrm{OMe}$; 107.0, C(1); 112.7, C(10); $125.9 \mathrm{C}(11 \mathrm{a}) ; 128.3, \mathrm{C}(3 \mathrm{~b}) ; 132.1, \mathrm{C}(3 \mathrm{a})$; 152.4, C(9b); 155.1, C(11); 168.3, C(3). MS: $m / z 388$ ($22, M^{+}$), 373 ($16, M-\mathrm{Me}$), 356 (100, $M-\mathrm{MeOH}$), 341 ($20,373-\mathrm{MeOH}$), 311 ($48,356-\mathrm{CH}_{2} \mathrm{OMe}$), 257 (40), 229 (22)]; and (iii) [1 S-($1 \alpha, 5 \mathrm{a} \beta, 6 \alpha, 9 \mathrm{a} \alpha)]-4,5,5 \mathrm{a}, 6,7,8,9,9 \mathrm{a}-$ octahydro-1,11-di-methoxy-6-methoxymethyl-1,6,9a-trimethylphenanthro[1,2-c]furan-3(1H)-one (22) ($59 \mathrm{mg}, 32 \%$) which crystallised from hexanes as rods, m.p. $160-169^{\circ} \mathrm{C}$ (dec). Anal. Found: $\mathrm{C}, 71.4 ; \mathrm{H}, 8.4 \% . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}$ calc.: $\mathrm{C}, 71.1 ; \mathrm{H}, 8.3 \%$. IR: $\nu_{\max } 1751$ (lactone CO), 1198, $1115,1071 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.01(\mathrm{t} \times \mathrm{d}, J 13.5,4.1 \mathrm{~Hz}$, H(7ax)); 1.04 (s, 6-Me); 1.23 (s, 9a-Me); 1.40 (d $\times \mathrm{d}, J 12.7,1.7 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{a})$); 1.45 ($\mathrm{t} \times \mathrm{d}, J 12.9,3.8 \mathrm{~Hz}, \mathrm{H}(9 \mathrm{ax})$); 1.61-1.72 (m, H(5ax), H(8eq)); 1.76 (q $\times \mathrm{t}, J 13.8$, $3.2 \mathrm{~Hz}, \mathrm{H}(8 \mathrm{ax})$); 1.83 (s, 1-Me); 1.90 (bd, J $13.6 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); 2.06 (bd $\times \mathrm{d}, J 13.5$, $7.7 \mathrm{~Hz}, \mathrm{H}(5 \mathrm{eq})$); 2.30 (bd, $J 12.2 \mathrm{~Hz}, \mathrm{H}(9 \mathrm{eq})$); 2.94 ($\mathrm{d} \times \mathrm{d} \times \mathrm{d}, J 18.8,11.7,7.7 \mathrm{~Hz}$, H(4ax)); 3.10 (s, 1-OMe); 3.24, 3.52 (d, J $9.1 \mathrm{~Hz}, 6-\mathrm{CH}_{2} \mathrm{OMe}$); 3.33 (s, $6-\mathrm{CH}_{2} \mathrm{OMe}$); 3.44 (bd $\times \mathrm{d}, J 18.8,5.9 \mathrm{~Hz}, \mathrm{H}(4 \mathrm{eq})$); 3.89 (s, 11-OMe); 7.05 (s, H(10)). ${ }^{13} \mathrm{C}$ NMR: 18.3, C(2); 19.1, C(6); 23.8, 1-Me; 25.7, 9a-Me; 26.5, C(4); 27.6, 6-Me; 35.7, C(7); 38.0, C(9a); 38.7, C(6); 39.4, C(9); 50.8, C(5a); 51.4, 1-OMe; $55.6,11-\mathrm{OMe} ; 59.4$, $6-\mathrm{CH}_{2} \mathrm{OMe} ; 75.7,6-\mathrm{CH}_{2} \mathrm{OMe} ; 107.0, \mathrm{C}(1) ; 112.7, \mathrm{C}(10) ; 125.9, \mathrm{C}(11 \mathrm{a}) ; 128.4$ C(3b); 132.2, C(3a); 152.4, C(9b); 155.1, C(11); 168.3, C(3). MS: $m / z 388$ (37, M^{+}), 373 (22, M - Me), 356 (100, M - MeOH), 341 (14, 373 - MeOH), 311 (28, 356 $\mathrm{CH}_{2} \mathrm{OMe}$), 257 (40).

Repetition of the reaction on a larger scale (0.45 g of 6) gave 21 and $22(71 \%)$.
(b) With NBS in CCl_{4}. A mixture of $6(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$ and NBS $(54 \mathrm{mg}$, 0.30 mmol) in CCl_{4} (5 ml) was heated under reflux under argon for 4 h . Workup and PLC gave (i) a mixture (71 mg) of $7(4 \%)$ and $8(57 \%)$; and (ii) 13-acetyl-14-bromo-12,19-dimethoxypodocarpa-8,11,13-triene (8) ($42 \mathrm{mg}, 34 \%$) as a clear oil (Kugelrohr, $150-160^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}$). Anal. Found: C, $61.5 ; \mathrm{H}, 6.7 \% . \mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrO}_{3}$ calc.: C, 61.6; H, 7.1\%. IR: $\nu_{\max } 1713$ (ketone CO), $1107 \mathrm{~cm}^{-1}$ (C-O-C). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.99$ (t $\times \mathrm{d}, \mathrm{J} 13.6,4.2 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})$); 1.04 (s, H(18) $)_{3}$); 1.19 (s, H(20) $)_{3}$); 1.34 (bd, J $12.8 \mathrm{~Hz}, \mathrm{H}(5)) ; 1.39$ (t $\times \mathrm{d}, J 12.8,3.7 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})) ; 1.60-1.69$ (m, H(2eq), H(6ax)); 1.72 ($\mathrm{q} \times \mathrm{t}, J 13.8,3.6 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); 1.87 (bd, J $13.5 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{eq})$); 2.05 (bd $\times \mathrm{d}, J$ $13.6,7.6 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq})$); 2.27 (bd, J $12.3 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{eq})$); 2.49 (s, 13-COMe); 2.58 (d $\times \mathrm{d} \times \mathrm{d}, J 17.6,11.7,7.8 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})$); $2.88(\mathrm{bd} \times \mathrm{d}, J 17.6,6.4 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); 3.24 , 3.49 (d, J $9.1 \mathrm{~Hz}, \mathrm{H}(19)_{2}$); 3.33 (s, 19-OMe); 3.77 (s, 12-OMe); 6.81 (s, $\mathrm{H}(11)$). ${ }^{13} \mathrm{C}$ NMR: 19.1(1), C(2); 19.1(4), C(6); 25.5, C(20); 27.6, C(18); 31.3(6), C(7); 31.4(3), 13-COMe; 35.7, C(3); 37.9, C(10); 38.5, C(4); 39.3, C(1); 50.4, C(5); 55.8, 12-OMe; 59.4, 19-OMe; 75.8, C(19); 106.7, C(11); 120.4, C(14); 127.2, C(13); 131.0, C(8); 153.0, C(9); 153.9, C(12); 202.9, 13-COMe. MS: $m / z 410 / 408\left(61 / 61, M^{+}\right)$, 393/395 (40/40, M - Me), 363/361 (16/16, M-MeOH - Me), 321/319 (23/23), 43 (100, COMe).
(c) With NIS in CCl_{4}. A mixture of $6(0.20 \mathrm{~g}, 0.40 \mathrm{mmol})$ and NIS $(91 \mathrm{mg}, 0.40$ mmol) in $\mathrm{CCl}_{4}(7 \mathrm{ml})$ was heated under reflux under argon for 2.1 h . Workup and PLC gave a mixture (0.16 g) of 7 (12%) and 13-acetyl-14-iodo-12,19-dimethoxy-podocarpa-8,11,13-triene (11) (79\%) as a clear oil. Found: $M^{+ \text {; }}$, 456.1173. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{IO}_{3}$ calc.: $M, 456.1161$. IR: $\nu_{\max } 1711$ (ketone CO), 1589, 1543, 1456 (C=C), $1107 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 0.98(\mathrm{t} \times \mathrm{d}, J 13.6,4.1 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})) ; 1.04$ (s, $\left.\mathrm{H}(18)_{3}\right) ; 1.19\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.33(\mathrm{~d} \times \mathrm{d}, J 13.0,1.7 \mathrm{~Hz}, \mathrm{H}(5)$); $1.39(\mathrm{t} \times \mathrm{d}, J 12.9,4.0$
$\mathrm{Hz}, \mathrm{H}(1 \mathrm{ax})$); 1.60-1.68 (m, H(2eq), H(6ax)); 1.72 (q) $\times \mathrm{t}, J 13.7,3.1 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); 1.86 (bd, $J 13.5 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{eq})$); 2.05 (bd $\times \mathrm{d}, J 13.5,7.8 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq})$); 2.27 (bd, J 12.2 $\mathrm{Hz}, \mathrm{H}(1 \mathrm{eq})$); 2.49 (s, (13-COMe)); 2.58 ($\mathrm{d} \times \mathrm{d} \times \mathrm{d}, J 17.2,11.6,4.0 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})$); 2.80 (bd $\times \mathrm{d}, J 17.2,6.4 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); $3.23,3.49\left(\mathrm{~d}, J 9.1 \mathrm{~Hz}, \mathrm{H}(19)_{2}\right) ; 3.32$ (s, 19-OMe); 3.76 (s, 12-OMe); 6.85 (s, H(11)). ${ }^{13} \mathrm{C}$ NMR: 19.1, C(2); 19.9, C(6); 25.5, C(20); 27.5, C(18); 30.9, 13-COMe; 35.7, C(3); 37.4, C(7); 37.9, C(10); 38.5, C(4); $39.3, \mathrm{C}(1) ; 50.5, \mathrm{C}(5) ; 55.8,12-\mathrm{OMe} ; 59.4,19-\mathrm{OMe} ; 75.8, \mathrm{C}(19) ; 98.8, \mathrm{C}(14) ; 107.7$, C(11); 129.7, C(13); 135.5, C(8); 152.4, C(9); 153.5, C(12); 204.8, 13-COMe. MS: $m / z 456\left(100, M^{+}\right), 441$ (59, M-Me), 409 (11, 441 - Me), 367 (27,441 - OMe COMe), 329 (57, M - I), 43 (50, COMe).
Reactions of tetracarbonyl(dimethyl 12-methoxy-7-oxo-19-norpodocarpa-8,11,13-tri-ene-4 $\beta, 13$-dicarboxylate- C^{14}, O^{7})manganese (24) with electrophilic halogen
(a) With NBS in CCl_{4}. A mixture of $24(0.15 \mathrm{~g}, 0.29 \mathrm{mmol})$ and NBS $(50 \mathrm{mg}$, 0.29 mmol) in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was heated under reflux under argon for 3 h . Workup and PLC gave (i) dimethyl 14-bromo-12-methoxy-7-oxo-19-norpodocarpa-8,11,13-triene- $4 \beta, 13$-dicarboxylate (26) ($71 \mathrm{mg}, 56 \%$) which crystallised from hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ as microrods, m.p. $149-151^{\circ} \mathrm{C}$. [Anal. Found: C, $55.0 ; \mathrm{H}, 5.5 ; \mathrm{Br}, 18.0 \%$. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrO}_{6}$ calc.: C, $55.6 ; \mathrm{H}, 5.5 ; \mathrm{Br}, 17.6 \%$. IR: $\nu_{\text {max }} 1726$ (ester CO), 1689 (ketone CO), 1587, 1547, $1456 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.10\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.13$ ($\mathrm{t} \times \mathrm{d}, J 13.7,3.8 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})$); 1.26 (s, H(18) $)_{3}$); 1.54 ($\times \mathrm{d}, J 13.3,4.0 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})$); 1.73 (d $\times \mathrm{p}, J 14.4,3.1 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})$); $2.00(\mathrm{~d} \times \mathrm{d}, J 14.0,4.2 \mathrm{~Hz}, \mathrm{H}(5)$); $2.02(\mathrm{q} \times \mathrm{t}, J$ $13.9,3.4 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})) ; 2.27-2.32$ (m, H(1eq), H(3eq)); $2.94(\mathrm{~d} \times \mathrm{d}, J 18.2,4.2 \mathrm{~Hz}$, $\mathrm{H}(6 \mathrm{eq})$); 3.28 ($\mathrm{d} \times \mathrm{d}, J 18.1,14.1 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})$); 3.70 (s, 19-OMe); 3.88 (s, 12-OMe); 3.93 (s, 13- $\mathrm{CO}_{2} \mathrm{Me}$); 6.90 (s, H(11)). ${ }^{13} \mathrm{C}$ NMR: 19.6, C(2); 21.4, C(20); 27.7, C(18); 37.1, C(3); 38.1, C(6); 38.9, C(1); 40.0, C(10); 43.9, C(4); 48.8, C(5); 51.6, 19-OMe; $52.7,13-\mathrm{CO}_{2} \mathrm{Me} ; 56.1,12-\mathrm{OMe} ; 106.0, \mathrm{C}(11) ; 119.8,123.0,127.8, \mathrm{C}(8), \mathrm{C}(13)$, $\mathrm{C}(14) ; 159.0, \mathrm{C}(9) ; 159.5, \mathrm{C}(12) ; 166.4,13-\mathrm{CO}_{2} \mathrm{Me} ; 176.6, \mathrm{C}(19) ; 195.5, \mathrm{C}(7) . \mathrm{MS}:$ $m / z 454 / 452\left(100 / 100, M^{+}\right), 423 / 421$ ($32 / 28, M-\mathrm{OMe}$), 421/419 (33/29), $328 / 326$ (35/50), 313/311 (40/44), 149 (20), 115 (21)]; and (ii) dimethyl 12-methoxy-7-oxo-19-norpodocarpa-8,11,13-triene-4 $\beta, 13$-dicarboxylate (25) (11 mg , 10%).
(b) With N1S in CCl_{4}. A mixture of $24(90 \mathrm{mg}, 0.17 \mathrm{mmol})$ and NIS $(38 \mathrm{mg}$, $0.16 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was heated under reflux under argon for 3 h . Workup and PLC gave (i) dimethyl 14-iodo-12-methoxy-7-oxo-19-norpodocarpa-8,11,13-tri-ene-4 $\beta, 13$-dicarboxylate (27) $(51 \mathrm{mg}, 61 \%)$ which crystallised from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ as needles, m.p. $171-173^{\circ} \mathrm{C}$ [Anal. Found: C, $50.5 ; \mathrm{H}, 4.9 ; \mathrm{I}, 25.1 \% \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{IO}_{6}$ calc.: C, 50.4; H, 5.0; I, 25.4%. IR: $\nu_{\text {max }} 1723,1715$ (ester CO), 1685 (ketone CO), 1582, 1542, 1454, $1426 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.09\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.12(\mathrm{t} \times \mathrm{d}, \mathrm{J}$ 13.6, $3.9 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})$); 1.24 (s, H(18) $)_{3}$); 1.53 ($\mathrm{t} \times \mathrm{d}, \mathrm{J} 13.1,4.0 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})$); 1.72 $(\mathrm{d} \times \mathrm{p}, J 14.3,3.2 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})) ; 2.009(\mathrm{~d} \times \mathrm{d}, J 14.1,4.4 \mathrm{~Hz}, \mathrm{H}(5)) ; 2.020(\mathrm{q} \times \mathrm{t}, J$ $14.0,3.5 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); 2.26-2.31 (m, H(1eq), H(3eq)); $2.94(\mathrm{~d} \times \mathrm{d}, J 18.2,4.2 \mathrm{~Hz}$, $\mathrm{H}(6 \mathrm{eq})$); 3.28 ($\mathrm{d} \times \mathrm{d}, J 18.1,14.1 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})$); 3.69 (s, 19-OMe); 3.86 (s, 12-OMe); 3.93 (s, 13-CO ${ }_{2} \mathrm{Me}$); 6.92 (s, H(11)). ${ }^{13} \mathrm{C}$ NMR: 19.6, C(2); 21.4, C(20); 27.7, C(18); $37.2,37.5, \mathrm{C}(3), \mathrm{C}(6) ; 38.9, \mathrm{C}(1) ; 40.0, \mathrm{C}(10) ; 43.9, \mathrm{C}(4) ; 48.7, \mathrm{C}(5) ; 51.7,19-\mathrm{OMe} ;$ $52.9,13-\mathrm{CO}_{2} \mathrm{Me} ; 56.1,12-\mathrm{OMe} ; 91.8, \mathrm{C}(14) ; 106.9, \mathrm{C}(11) ; 124.3, \mathrm{C}(13) ; 133.2, \mathrm{C}(8)$; 156.7, 158.8, C(9), C(12); 168.0, 13-CO $\mathrm{CO}_{2} \mathrm{Me}$; 176.7, C(19); 195.7, C(7). MS: m/z 500 (100, M^{+}), 469 (11, $\left.M-\mathrm{OMe}\right), 440\left(5, M-\mathrm{HCO}_{2} \mathrm{Me}\right), 425(10,440-\mathrm{Me}), 399$ (4), 43 (18)]; and (ii) $25(9 \mathrm{mg}, 14 \%)$.

Reactions of tetracarbonyl(methyl 12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate$\mathrm{C}^{14}, \mathrm{O}^{7}$)manganese (28) with electrophilic halogen
(a) With Br_{2} in MeOH . Bromine ($67 \mathrm{mg}, 0.42 \mathrm{mmol}$) in anhydrous MeOH (3 $\mathrm{ml})$ was added dropwise to $28(0.20 \mathrm{~g}, 0.42 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$ and the mixture was stirred at room temperature for 10 min . Workup and PLC gave (i) tetracarbonyl(methyl 13-bromo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate-C ${ }^{14}, \mathrm{O}^{7}$) manganese (31) [12] ($40 \mathrm{mg}, 17 \%$); (ii) methyl $6 \alpha, 14$-dibromo-12-methoxy-7-oxo-podocarpa-8,11,13-trien-19-oate (30) ($12 \mathrm{mg}, 6 \%$) as a clear oil [Found: $M^{+ \text {- }}$, 471.9891. $\mathrm{C}_{19} \mathrm{H}_{22}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{4}$ calc.: M, 471.9885. IR: $\nu_{\max } 1726$ (ester CO), 1698 (ketone CO), $1594,1552,1462 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 0.88\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.18$ ($\mathrm{t} \times \mathrm{d}, J 13.6,4.2 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})) ; 1.52\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 1.70(\mathrm{t} \times \mathrm{d}, J 13.0,3.9 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax}))$; $1.75(\mathrm{~d} \times \mathrm{p}, J 14.3,3.0 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})$); $1.90(\mathrm{q} \times \mathrm{t}, J 13.8,3.4 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})) ; 2.09$ (bd, J $13.1 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{eq})$); 2.36 (bd, J $13.3 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{eq})$); 2.41 (d, J $6.3 \mathrm{~Hz}, \mathrm{H}(5)$); 3.73 (s, 19-OMe); 3.85 (s, 12-OMe); 5.71 (d, J $6.3 \mathrm{~Hz}, \mathrm{H}(6)$); 6.80 (d, J $2.2 \mathrm{~Hz}, \mathrm{H}(11)$); 7.10 (d, J $2.2 \mathrm{~Hz}, \mathrm{H}(13)) .{ }^{13} \mathrm{C}$ NMR: 19.3, C(2); 23.4, C(20); 28.6, C(18); 37.3, C(3); 37.9, C(1); 39.2, C(10); 45.3, C(4); 49.6, C(5); 52.0, 19-OMe; 55.7, 12-OMe; 57.5, C(6); 109.1, C(11); 117.1, C(13); 123.4, C(8); 125.2, C(14); 154.3, C(9); 162.5, C(12); 176.6, C(19); 189.9, C(7). MS: $m / z 476 / 474 / 472\left(8 / 16 / 8, M^{+}\right)$, 395/393 (100/92, $M-\mathrm{Br}$), 362 (11), 319 (35), 253 (41)]; and (iii) methyl 13-bromo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (29) (90 mg, 55\%) m.p. (EtOH) 191-193 ${ }^{\circ} \mathrm{C}$ (lit. [13] 191-193).
(b) With Br_{2} in CCl_{4}. Bromine ($33 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(1 \mathrm{ml})$ was added to $28(0.10 \mathrm{~g}, 0.21 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(2 \mathrm{ml})$, forming a bright yellow precipitate. After 45 min at room temperature, filtration through cotton wool, and PLC gave (i) a mixture ($3: 4$) (8 mg) of $\mathbf{3 0}(3 \%$) and methyl 6α-bromo-12-methoxy-7-oxopodo-carpa-8,11,13-trien-19-oate (32) (6%) as a clear oil [32: ${ }^{1} \mathrm{H}$ NMR: $\delta 0.85$ (s, $\mathrm{H}(20)_{3}$); 1.55 (s, $\mathrm{H}(18)_{3}$); 2.52 (d, J $7.1 \mathrm{~Hz}, \mathrm{H}(5)$); 3.73 (s, 19-OMe); 3.87 (s, 12-OMe); 5.82 (d, J $7.1 \mathrm{~Hz}, \mathrm{H}(6)$); 6.84 (d, J $2.4 \mathrm{~Hz}, \mathrm{H}(11)$); $6.88 \mathrm{~d} \times \mathrm{d}, J 8.4,2.4$ $\mathrm{Hz}, \mathrm{H}(13)) ; 7.82(\mathrm{~d}, J 8.4 \mathrm{~Hz}, \mathrm{H}(14))$]; and (ii) a mixture ($1: 1$) (66 mg) of 32 (40%) and methyl $6 \alpha, 13$-dibromo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (34) (33%). [34: ${ }^{1} \mathrm{H}$ NMR: $\delta 0.86\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.56\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 2.52(\mathrm{~d}, J 7.1 \mathrm{~Hz}, \mathrm{H}(5)$); 3.73 (s, 19-OMe); 3.97 (s, 12-OMe); 5.82 (d, J $7.1 \mathrm{~Hz}, \mathrm{H}(6)$); 6.84 (s, H(11)); 8.02 (s, $\mathrm{H}(14)) .{ }^{13} \mathrm{C}$ NMR: 19.2, C(2); 24.6, C(20); 29.2, C(18); 36.8, C(3); 38.1, C(1); 39.1, $\mathrm{C}(10) ; 45.3, \mathrm{C}(4) ; 48.1, \mathrm{C}(5) ; 52.0$, (19-OMe); $56.4,12-\mathrm{OMe} ; 57.3, \mathrm{C}(6) ; 105.7$, C(11); 110.9, C(13); 125.9, C(8); 133.2, C(14); 152.9, C(9); 160.0, C(12); 176.8, C(19); 191.9, C(7)].
(c) With NBS in CCl_{4}. A mixture of $28(0.15 \mathrm{~g}, 0.31 \mathrm{mmol})$ and NBS $(56 \mathrm{mg}$, 0.31 mmol) in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was heated under reflux under argon for 3 h . Workup and PLC gave (i) methyl 14-bromo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19oate (35) ($60 \mathrm{mg}, 49 \%$) which crystallised from aqueous MeOH as needles, m.p. $131-134^{\circ} \mathrm{C}$ [Anal. Found: C, 57.5; $\mathrm{H}, 5.9 ; \mathrm{Br}, 19.9 \% . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrO}_{4}$ calc.: $\mathrm{C}, 57.7 ; \mathrm{H}$, 5.8; $\mathrm{Br}, 20.2 \%$. IR: $\nu_{\max } 1720$ (ester CO), 1676 (ketone $\mathrm{C}=\mathrm{O}$), 1593, 1551, 1463 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.07\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.10(\mathrm{t} \times \mathrm{d}, J 13.6,4.0 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})) ; 1.23$ (s, $\left.\mathrm{H}(18)_{3}\right) ; 1.50(\mathrm{t} \times \mathrm{d}, J 13.9,4.6 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{iax})) ; 1.69(\mathrm{~d} \times \mathrm{p}, J 14.3,3.6 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq}))$; $1.986(\mathrm{~d} \times \mathrm{d}, J 14.1,4.1 \mathrm{~Hz}, \mathrm{H}(5)$); $1.988(\mathrm{q} \times \mathrm{t}, J 14.0,3.5 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); 2.23-2.29 (m, H(leq), H(3eq)); 2.92 (d $\times \mathrm{d}, J 18.2,4.1 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq})$); 3.24 ($\mathrm{d} \times \mathrm{d}, J 18.2,14.1$ $\mathrm{Hz}, \mathrm{H}(6 \mathrm{ax})$); 3.68 (s, 19-OMe); 3.82 (s, 12-OMe); 6.87 (d, J $2.5 \mathrm{~Hz}, \mathrm{H}(11)$); 7.08 (d, $J 2.5 \mathrm{~Hz}, \mathrm{H}(13)) .{ }^{13} \mathrm{C}$ NMR: 19.7, C(2); 21.5, C(20); 27.8, C(18); 37.3, C(3); 38.2,
$\mathrm{C}(6) ; 38.9, \mathrm{C}(1) ; 39.6, \mathrm{C}(10) ; 43.9, \mathrm{C}(4) ; 48.9, \mathrm{C}(5) ; 51.6,19-\mathrm{OMe} ; 55.6,12-\mathrm{OMe}$; $110.5 \mathrm{C}(11) ; 118.8, \mathrm{C}(13) ; 123.0, \mathrm{C}(8)$; 123.6, C(14); 158.7, C(9); 162.3, C(12); 176.8, C(19); 195.9, C(7). MS: $m / z 396 / 394$ ($100 / 99, M^{+}$), 381/379 (10/11, $M-\mathrm{Me}$), 364/362 (11/9, $M-\mathrm{MeOH}$), 321/319 (30/31, 381/379- $\mathrm{HCO}_{2} \mathrm{Me}$), 268 (75)]; (ii) methyl 12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (33) ($30 \mathrm{mg}, 31 \%$); (iii) one rotamer of $14,14^{\prime}$-[bis(methyl 12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate)] (41) ($8 \mathrm{mg}, 4 \%$) as a clear oil [Found: $M^{+}, 630.3173 . \mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{8}$ calc.: M, 630.3193. IR: $\nu_{\text {max }} 1724$ (ester CO), 1677 (ketone CO), $1590,1463 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.12\left(\mathrm{~s}, \mathrm{H}(20)_{3}, \mathrm{H}(20)_{3}{ }^{\prime}\right) ; 1.17\left(\mathrm{t} \times \mathrm{d}, J 13.8,3.7 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax}), \mathrm{H}(3 \mathrm{ax})^{\prime}\right) ; 1.22$ (s, $\left.\mathrm{H}(18)_{3}, \mathrm{H}(18)_{3}{ }^{\prime}\right) ; 1.66-1.74$ ($\left.\mathrm{H}(1 \mathrm{ax}), \mathrm{H}(1 \mathrm{ax})^{\prime}, \mathrm{H}(2 \mathrm{eq}), \mathrm{H}(2 \mathrm{eq})^{\prime}\right) ; 2.02(\mathrm{q} \times \mathrm{t}, \mathrm{J}$ $\left.14.4,3.4 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax}), \mathrm{H}(2 \mathrm{ax})^{\prime}\right) ; 2.16$ (d $\left.\times \mathrm{d}, J 14.3,3.6 \mathrm{~Hz}, \mathrm{H}(5), \mathrm{H}(5)^{\prime}\right) ; 2.28$ (bd, J $\left.13.2 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{eq}), \mathrm{H}(3 \mathrm{eq})^{\prime}\right) ; 2.34$ (bd, $\left.J 13.1 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{eq}), \mathrm{H}(1 \mathrm{eq})^{\prime}\right) ; 2.71(\mathrm{~d} \times \mathrm{d}, J$ $\left.17.7,4.5 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq}), \mathrm{H}(6 \mathrm{eq})^{\prime}\right) ; 3.07\left(\mathrm{~d} \times \mathrm{d}, J 17.7,14.3 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax}), \mathrm{H}(6 \mathrm{ax})^{\prime}\right) ; 3.66$ (s, 19-OMe, 19-OMe'); 3.82 (s, 12-OMe, 12-OMe'); 6.44 (d, J $2.5 \mathrm{~Hz}, \mathrm{H}(11)$, $\left.\mathrm{H}(11)^{\prime}\right) ; 6.89$ (d, J $\left.2.5 \mathrm{~Hz}, \mathrm{H}(13), \mathrm{H}(13)^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: 19.8, C(2), C(2)'; 21.7, C(20), $\mathrm{C}(20)^{\prime} ; 27.7, \mathrm{C}(18), \mathrm{C}(18)^{\prime} ; 37.2, \mathrm{C}(3), \mathrm{C}(3)^{\prime} ; 38.1, \mathrm{C}(6), \mathrm{C}(6)^{\prime} ; 38.7, \mathrm{C}(1), \mathrm{C}(1)^{\prime}$; $39.2, \mathrm{C}(10), \mathrm{C}(10)^{\prime} ; 44.0, \mathrm{C}(4), \mathrm{C}(4)^{\prime} ; 49.2, \mathrm{C}(5), \mathrm{C}(5)^{\prime} ; 51.5,19-\mathrm{OMe}, 19-\mathrm{OMe}^{\prime} ;$ $55.2,12-\mathrm{OMe}, 12-\mathrm{OMe}^{\prime} ; 108.8, \mathrm{C}(11), \mathrm{C}(11)^{\prime} ; 112.9, \mathrm{C}(13), \mathrm{C}(13)^{\prime} ; 122.4, \mathrm{C}(8)$, $\mathrm{C}(8)^{\prime} ; 148.3, \mathrm{C}(14), \mathrm{C}(14)^{\prime} ; 157.2, \mathrm{C}(9), \mathrm{C}(9)^{\prime} ; 162.6, \mathrm{C}(12), \mathrm{C}(12)^{\prime} ; 177.3, \mathrm{C}(19)$, $\mathrm{C}(19)^{\prime} ; 197.1, \mathrm{C}(7), \mathrm{C}(7)^{\prime} . \mathrm{MS}: m / z 630\left(57, M^{+}\right), 602$ (100, $M-\mathrm{CO}$), 461 (95)]; and (iv) a different rotamer of $14,14^{\prime}$-[bis(methyl 12 -methoxy-7-oxopodocarpa-$8,11,13$-trien-19-oate)] (41) ($12 \mathrm{mg}, 6 \%$) as a clear oil. Found: $M^{+}, 630.3165$. $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{8}$ calc.: $M, 630.3193$. IR: $\nu_{\max } 1724$ (ester CO), 1678 (ketone CO), 1590, $1463 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{\mathrm{t}} \mathrm{H}$ NMR: $\delta 1.12\left(\mathrm{t} \times \mathrm{d}, J 13.5,3.9 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax}), \mathrm{H}(3 \mathrm{ax})^{\prime}\right) ; 1.19(\mathrm{~s}$, $\left.\mathrm{H}(20)_{3}, \mathrm{H}(20)_{3}{ }^{\prime}\right) ; 1.21\left(\mathrm{~s}, \mathrm{H}(18)_{3}, \mathrm{H}(18)_{3}{ }^{\prime}\right) ; 1.57(\mathrm{t} \times \mathrm{d}, \mathrm{J} 13.4,4.0 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})$, $\left.\mathrm{H}(1 \mathrm{ax})^{\prime}\right) ; 1.71\left(\mathrm{~d} \times \mathrm{p}, J 14.2,2.8 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq}), \mathrm{H}(2 \mathrm{eq})^{\prime}\right) ; 2.03(\mathrm{~d} \times \mathrm{d}, J 14.5,3.3 \mathrm{~Hz}$, $\left.\mathrm{H}(5), \mathrm{H}(5)^{\prime}\right) ; 2.07\left(\mathrm{q} \times \mathrm{t}, J 13.9,3.2 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax}), \mathrm{H}(2 \mathrm{ax})^{\prime}\right) ; 2.29$ (bd, J 13.5 Hz , $\left.\mathrm{H}(3 \mathrm{eq}), \mathrm{H}(3 \mathrm{eq})^{\prime}\right) ; 2.37$ (bd, $\left.J 12.7 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{eq}), \mathrm{H}(\mathrm{leq})^{\prime}\right) ; 2.68(\mathrm{~d} \times \mathrm{d}, J 17.6,3.3 \mathrm{~Hz}$, $\left.\mathrm{H}(6 \mathrm{eq}), \mathrm{H}(6 \mathrm{eq})^{\prime}\right) ; 3.09\left(\mathrm{~d} \times \mathrm{d}, J 17.6,14.5 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax}), \mathrm{H}(6 \mathrm{ax})^{\prime}\right) ; 3.67(\mathrm{~s}, 19-\mathrm{OMe}$, $19-\mathrm{OMe}^{\prime}$); 3.81 (s, 12-OMe, 12-OMe'); 6.41 (d, J $\left.2.5 \mathrm{~Hz}, \mathrm{H}(11), \mathrm{H}(11)^{\prime}\right) ; 6.89$ (d, J $\left.2.5 \mathrm{~Hz}, \mathrm{H}(13), \mathrm{H}(13)^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: 19.7, C(2), C(2)'; 21.4, C(20), C(20)'; 27.8, C(18), $\mathrm{C}(18)^{\prime} ; 37.5, \mathrm{C}(3), \mathrm{C}(3)^{\prime} ; 38.0, \mathrm{C}(6), \mathrm{C}(6)^{\prime} ; 39.1, \mathrm{C}(1), \mathrm{C}(1)^{\prime} ; 39.4, \mathrm{C}(10), \mathrm{C}(10)^{\prime}$; 43.9, C(4), C(4)'; 49.7, C(5), C(5)'; 51.5, 19-OMe, 19-- ${ }^{\prime}{ }^{\prime} ; 55.2,12-\mathrm{OMe}, 12-\mathrm{OMe}^{\prime} ;$ 108.6, $\mathrm{C}(11), \mathrm{C}(11)^{\prime}, 112.5, \mathrm{C}(13), \mathrm{C}(13)^{\prime} ; 122.5, \mathrm{C}(8), \mathrm{C}(8)^{\prime} ; 148.2, \mathrm{C}(14), \mathrm{C}(14)^{\prime} ;$ 157.2, C(9), C(9)'; 162.5, C(12), C(12)'; 177.2, C(19), C(19)'; 197.0, C(7), C(7)'. MS: $m / z 630\left(58, M^{+}\right), 602(100, M-C O), 461$ (95), 149 (11), 120 (24), 86 (13), 94 (16), 41 (22).
(d) With NIS in CCl_{4}. A mixture of $28(0.15 \mathrm{~g}, 0.31 \mathrm{mmol})$ and NIS (70 mg , $0.31 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{ml})$ was heated under reflux under argon for 4 h . Workup and PLC gave (i) methyl 14-iodo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (36) $(85 \mathrm{mg}, 62 \%)$ which crystallised from aqueous MeOH as yellow needles, m.p. $155-157^{\circ} \mathrm{C}$ [Anal. Found: C, 51.5; H, 5.2; I, $28.7 \% . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{IO}_{4}$ calc.: C, $51.6 ; \mathrm{H}$, 5.2; I, 28.7\%. IR: $\nu_{\max } 1717$ (ester CO), 1681 (ketone CO), $1587,1541,1456 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $1.06\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.10(\mathrm{t} \times \mathrm{d}, J 13.5,3.9 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})$); $1.23(\mathrm{~s}$, $\left.\mathrm{H}(18)_{3}\right) ; 1.49(\mathrm{t} \times \mathrm{d}, J 13.2,4.1 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})) ; 1.69(\mathrm{~d} \times \mathrm{p}, J 14.3,3.6 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq}))$; $1.983(\mathrm{q} \times \mathrm{t}, J 14.0,3.5 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{ax})$); $1.984(\mathrm{~d} \times \mathrm{d}, J 14.2,4.0 \mathrm{~Hz}, \mathrm{H}(5)) ; 2.23-2.29$ (m, H(1eq), H(3eq)); $2.93(\mathrm{~d} \times \mathrm{d}, J 18.2,4.0 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq})$); $3.24(\mathrm{~d} \times \mathrm{d}, J 18.2,14.2$ $\mathrm{Hz}, \mathrm{H}(6 \mathrm{ax})$); 3.68 (s, 19-OMe); 3.82 (s, 12-OMe); 6.91 (d, J $2.5 \mathrm{~Hz}, \mathrm{H}(11)$); 7.46 (d,

J $2.5 \mathrm{~Hz}, \mathrm{H}(13)) .{ }^{13} \mathrm{C}$ NMR: 19.6, $\mathrm{C}(2) ; 21.5, \mathrm{C}(20) ; 27.7, \mathrm{C}(18) ; 37.2, \mathrm{C}(6) ; 37.4$, C(3); 38.8, C(1); 39.6, C(10); 43.8, C(4); 48.8, C(5); 51.6, 19-OMe; 55.5, 12-OMe; 94.5, C(14); 111.3, C(11); 124.1, C(8); 126.4, C(13); 158.0, C(9); 162.2, C(12); 176.8, $\mathrm{C}(19)$; 195.6, C(7). MS: $m / z 442$ ($100, M^{+}$), 367 ($16, M-\mathrm{Me}-\mathrm{HCO}_{2} \mathrm{Me}$), 315 (11, $M-\mathrm{I}$), 301 (25), 213 (8), 115 (9)]; (ii) 33 ($17 \mathrm{mg}, 17 \%$); (iii) one rotamer of 41 ($3 \mathrm{mg}, 2 \%$) and (iv) a different rotamer of $41(1.5 \mathrm{mg}, 1 \%)$.
(e) With ICl in CCl_{4}. $\mathrm{ICl}(48 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(1 \mathrm{ml})$ was added dropwise to $28(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(2 \mathrm{ml})$ and the solution was stirred at room temperature for 93 h . Workup and PLC gave (i) 28 ($25 \mathrm{mg}, 17 \%$); (ii) 33 (25 $\mathrm{mg}, 26 \%$); and (iii) a mixture ($7: 1$) (25 mg) of 33 (16%) and methyl $6 \beta, 14$-diiodo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (37) (2\%). 37: ${ }^{1} \mathrm{H}$ NMR: $\delta 0.92$ (s, H(20) $)_{3}$) 1.34 (s, H(18) $) ; 2.78$ (d, J $2.4 \mathrm{~Hz}, \mathrm{H}(5)$); 3.68 (s, 19-OMe); 3.85 (s, 12-OMe); 5.94 (d, J $2.3 \mathrm{~Hz}, \mathrm{H}(6)$); 6.98 (d, J $1.8 \mathrm{~Hz}, \mathrm{H}(11)$); 7.05 (d, J 1.8 Hz , H(13)).
(f) With ICl_{3} in $\mathrm{CCl}_{4} . \mathrm{ICl}_{3}(98 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(2 \mathrm{ml})$ was added dropwise to $28(0.20 \mathrm{~g}, 0.42 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(5 \mathrm{ml})$, and the mixture was stirred at room temperature for 24 h . Workup and PLC gave (i) a mixture ($1: 1$) (60 mg) of $33 \mathbf{(2 2 \%)}$ and methyl 13-iodo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate dichloride (39) (14%). 39: IR: $\nu_{\text {max }} 1723$ (ester CO), $1670 \mathrm{~cm}^{-1}$ (ketone CO). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.12\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.26\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 2.96(\mathrm{~d} \times \mathrm{d}, J 18.0,3.3 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq})) ; 3.17$ ($\mathrm{d} \times \mathrm{d}, J 18.0,14.4 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})$); 3.70 (s, 19-OMe); 3.95 (s, 12-OMe); 6.87 (s, $\mathrm{H}(11)$); 8.05 (s, H(14)). ${ }^{13} \mathrm{C}$ NMR: 19.6, C(2); 21.3, C(20); 27.9, C(18); 37.2, C(6); $37.4, \mathrm{C}(3) ; 38.5, \mathrm{C}(1) ; 38.8, \mathrm{C}(10) ; 43.9, \mathrm{C}(4) ; 50.2, \mathrm{C}(5) ; 51.6,19-\mathrm{OMe} ; 56.2$, $12-\mathrm{OMe} ; 107.3, \mathrm{C}(11) ; 121.6,124.8, \mathrm{C}(8), \mathrm{C}(13) ; 129.1, \mathrm{C}(14) ; 155.3, \mathrm{C}(9) ; 159.2$, $\mathrm{C}(12)$; 177.1, C(19); 197.6, C(7). MS: $m / z 442$ ($30, M-2 \mathrm{Cl}$), 350 ($93, \mathrm{M}-\mathrm{MeOH}$ $-\mathrm{HCO}_{2} \mathrm{Me}$), 275 (100); and (ii) a mixture ($4: 1$) (30 mg) of 36 (13%) and methyl $6 \alpha, 14$-diiodo-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (38) (3\%). $38:{ }^{1} \mathrm{H}$ NMR: $\delta 0.82\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.62\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 2.54(\mathrm{~d}, J 6.4 \mathrm{~Hz}, \mathrm{H}(5)) ; 3.72$ (s , 19-OMe); 3.84 (s, 12-OMe); 6.04 (d, J $6.4 \mathrm{~Hz}, \mathrm{H}(6)$); 6.81 (d, J $2.3 \mathrm{~Hz}, \mathrm{H}(11)$); 7.39 (d, J 2.3 Hz, H(13)). ${ }^{13} \mathrm{C}$ NMR: 19.1, C(2); 22.8, C(20); 28.8, C(6); 28.9, C(18); 37.0, $\mathrm{C}(3) ; 38.0, \mathrm{C}(1) ; 39.4, \mathrm{C}(10) ; 45.8, \mathrm{C}(4) ; 52.0,19-\mathrm{OMe} ; 55.6,12-\mathrm{OMe} ; 57.7, \mathrm{C}(5)$; $109.8, \mathrm{C}(11) ; 123.8, \mathrm{C}(13)$; the resonances due to the carbonyl and aromatic quaternary carbons were too weak to be distinguished from the baseline.

Reaction of tetracarbonyl(methyl 13-acetyl-12-methoxypodocarpa-8,11,13-trien-19-oate- $\mathrm{C}^{14}, \mathrm{O}^{13}$) manganese (2) with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in THF

A mixture of $2(0.25 \mathrm{~g}, 0.49 \mathrm{mmol})$ and lead tetraacetate (freshly recrystallised from acetic acid and dried, $0.24 \mathrm{~g}, 0.54 \mathrm{mmol}$) in tetrahydrofuran (10 ml) was stirred under argon for 4 h . Workup and PLC gave (i) 2 ($6 \mathrm{mg}, 2 \%$); (ii) 3 (0.13 g , 75%); (iii) methyl 14-acetoxy-13-acetyl-12-methoxypodocarpa-8,11,13-trien-19-oate (12) $(8 \mathrm{mg}, 4 \%)$ as a clear oil [Found: $M^{+}, 402.2057 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6}$ calc.: $M, 402.2042$. IR: $\nu_{\max } 1768(\mathrm{OAc}), 1724\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1697(\mathrm{COMe}), 1609,1465 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.04\left(\mathrm{~s}, \mathrm{H}(20)_{3}\right) ; 1.07(\mathrm{t} \times \mathrm{d}, J 13.5,4.4 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})) ; 1.25\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 1.42$ ($\mathrm{t} \times \mathrm{d}, J 13.4,4.0 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})$); $1.49(\mathrm{~d} \times \mathrm{d}, J 11.1,1.2 \mathrm{~Hz}, \mathrm{H}(5)$); $1.63(\mathrm{~d} \times \mathrm{p}, J$ $14.2,2.9 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})$); $1.86(\mathrm{q} \times \mathrm{d}, J 13.1,5.4 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})$); $1.98(\mathrm{q} \times \mathrm{t}, J 13.1,4.7$ $\mathrm{Hz}, \mathrm{H}(2 \mathrm{ax})$); 2.16-2.29 (m, H(1eq), H(3eq), H(6eq)); 2.24 (s, 14-OCOMe); 2.36 ($\mathrm{d} \times \mathrm{d} \times \mathrm{d}, J 16.9,12.8,6.4 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{ax})$); 2.47 (s, 13-COMe); 2.71 (bd $\times \mathrm{d}, J 16.8$, $4.4 \mathrm{~Hz}, \mathrm{H}(7 \mathrm{eq})$); 3.66 (s, 19-OMe); 3.85 (s, 12-OMe); 6.74 (s, H(11)). MS: m/z 402
($6, M^{+}$), 371 ($23, M-\mathrm{OMe}$), 360 ($100, M-\mathrm{CH}_{2} \mathrm{CO}$), 345 ($19,360-\mathrm{Me}$), 285 (30)]; and (iv) methyl 14-acetoxy-13-acetyl-12-methoxy-7-oxopodocarpa-8,11,13-trien-19-oate (40) (15 mg, 7\%) as a clear oil. Found: $M^{+} ; 416.1831 . \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7}$ calc.: $M, 416.1835$. IR: $\nu_{\max } 1771$ (OAc), $1723\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1677$ (ketone carbonyls), $1598,1494,1466 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.09(\mathrm{t} \times \mathrm{d}, J 13.4,3.9 \mathrm{~Hz}, \mathrm{H}(3 \mathrm{ax})) ; 1.12$ ($\left.\mathrm{s}, \mathrm{H}(20)_{3}\right) ; 1.23\left(\mathrm{~s}, \mathrm{H}(18)_{3}\right) ; 1.56(\mathrm{t} \times \mathrm{d}, J 13.5,3.5 \mathrm{~Hz}, \mathrm{H}(1 \mathrm{ax})) ; 1.73(\mathrm{~d} \times \mathrm{p}, J$ 13.6, $3.1 \mathrm{~Hz}, \mathrm{H}(2 \mathrm{eq})$); 2.01 ($\mathrm{d} \times \mathrm{d}, J 14.4,3.2 \mathrm{~Hz}, \mathrm{H}(5)$); 2.21-2.30 (m, H(1eq), H(3eq)); 2.32 (s, 14-OCOMe); 2.44 (s, 13-COMe); 2.84 (d $\times \mathrm{d}, J 17.8,3.3 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{eq})$); 3.14 (d $\times \mathrm{d}, J 17.8,14.5 \mathrm{~Hz}, \mathrm{H}(6 \mathrm{ax})$); 3.68 (s, 19-OMe); 3.89 (s, 12-OMe); 6.82 (s, H(11)). ${ }^{13} \mathrm{C}$ NMR: 19.6, C(2); 21.0, 14-OCOMe; 21.4, C(20); 27.7, C(18); 31.9, 13-COMe; 37.1, C(3); 38.5, C(6); 38.8, C(1); 39.7, C(10); 43.8, C(4); 49.1, C(5); 51.6, 19-OMe; $55.9,12-\mathrm{OMe}$; 104.7, C(11); 124.6, C(8); 128.4, C(13); 147.7, C(14); 159.2, C(9); $160.1, \mathrm{C}(12) ; 169.4,14-\mathrm{OCOMe}$; 176.8, C(19); 195.6, 199.6, C(7), 13-COMe. MS: $m / z 416\left(4, M^{+}\right), 374$ (34, M-CH2CO), 359 ($100,374-\mathrm{Me}$), 162 (7), 91 (6).

Reaction of 2 with (i) trimethoxyborane in MeCN , (ii) m-chloroperbenzoic acid in CHCl_{3}, or (iii) oxodiperoxymolybdenum(pyridine)(hexamethylphosphoric triamide) (MoOPH) in THF at room temperature, gave only 2 and 3.

Crystallography

Crystals suitable for data collection were mounted on glass fibres and positioned on a Nonius CAD-4 diffractometer. Unit cell dimensions were derived from least-squares fits to the observed setting angles of 25 reflections, monochromated $\mathrm{Mo}-K_{\alpha}$ radiation being used. Intensity data collection employed the $2 \theta / \omega$ technique with a total peak/background count time of $2: 1$. The omega scan angle was $0.80+0.347 \tan \theta$. Reflections were counted for 60 s or until $\sigma(I) / I$ was 0.02 . Crystal alignment and decomposition were monitored throughout data collection by measuring three standard reflections every 100 measurements, no statistical variation being observed. The data were corrected for Lorentz and polarization effects and equivalent reflections averaged. Computing was carried out using the sDP suite of programs on a PDP-11 computer for initial data processing, shelxs-86 [41] and shelx-76 [42] and on an IBM 4341 computer for structure solution and refinement. Details of crystal data and intensity data collection parameters are summarized in Table 3.

Structure solution and refinement

The structure was solved by direct methods using shelxs-86. Refinement was by full-matrix least squares, minimising the function $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. Atomic scattering factors were for neutral atoms. After initial isotropic refinement, anisotropic thermal parameters were refined for all non-hydrogen atoms. Weights used were $w=1 /\left[\sigma^{2}(F)+g F^{2}\right]$ with final values of g being given in Table 3.

Final atomic coordinates and bond distances are given in Tables 4 and 5. Material deposited comprises hydrogen coordinates, thermal parameters, bond angles, and observed and calculated structure factors.

Description of the crystal structure

The crystal analysis of 19 established unequivocally the stereochemistry at $\mathrm{C}(17)$, with the molecule being depicted in Fig. 1. All interatomic distances and bond angles are within the normally expected ranges.

Table 3
Crystal data and intensity collection parameters

Table 4
Atomic coordinates and standard deviations for 19

Atom	x	y	z
C(1)	0.0415(14)	0.6260(9)	-0.1291(3)
C(2)	0.0083(15)	0.6157(11)	-0.1966(4)
C(3)	-0.0706(14)	0.4824(10)	-0.1252(3)
C(4)	$0.0480(12)$	$0.3666(10)$	-0.1795(3)
C(5)	0.0843(11)	0.3809(8)	-0.1252(3)
C(6)	$0.1872(13)$	0.2667(7)	-0.1009(3)
C(7)	0.1523(15)	0.2693(7)	-0.0482(3)
C(8)	$0.1585(12)$	0.4072(7)	-0.0261(3)
C(9)	0.1666 (13)	0.5226(7)	-0.0544(3)
C(10)	0.1663(13)	$0.5159(7)$	-0.1098(3)
C(11)	$0.1738(12)$	$0.6474(8)$	-0.0324(3)
C(12)	$0.1604(14)$	$0.6626(8)$	0.0159(3)
C(13)	$0.1425(14)$	$0.5489(8)$	0.0448(3)
C(14)	$0.1445(13)$	$0.4274(7)$	0.0225(3)
C(15)	$0.1359(14)$	0.3289(9)	0.0616(3)
C(16)	$0.1134(15)$	0.5362(8)	0.0974(3)
C(17)	$0.2563(14)$	0.5933(9)	0.1289(3)
C(18)	-0.0602(13)	0.2367(10)	-0.1898(3)
C(19)	0.2128(14)	$0.3567(10)$	-0.2119(3)
$\mathrm{C}(20)$	0.3652(12)	0.5381(8)	-0.1274(3)
C(21)	-0.1315(16)	0.5641(9)	0.1539(3)
C(22)	$0.1645(15)$	0.8997(8)	0.0119(3)
C(23)	$0.4665(13)$	0.2303(12)	-0.2326(3)
O(1)	$0.2457(10)$	0.4278(7)	-0.2457(2)
O(2)	0.3162(9)	0.2541(7)	0.0601(2)
$\mathrm{O}(3)$	0.1367(10)	0.2080(6)	0.0601(2)
O(4)	0.1158 (8)	0.3914(5)	$0.1047(18)$
$\mathrm{O}(5)$	-0.0687(9)	0.5793(6)	0.1071(2)
O(6)	0.1603(10)	$0.7814(5)$	0.0404(2)

Table 5
Interatomic bond distances and standard deviations for 19

$\mathrm{C}(19)-\mathrm{O}(1)$	$1.202(13)$	$\mathrm{C}(19)-\mathrm{O}(2)$	$1.315(14)$
$\mathrm{C}(23)-\mathrm{O}(2)$	$1.431(13)$	$\mathrm{C}(15)-\mathrm{O}(3)$	$1.214(13)$
$\mathrm{C}(15)-\mathrm{O}(4)$	$1.467(12)$	$\mathrm{C}(16)-\mathrm{O}(5)$	$1.429(15)$
$\mathrm{C}(21)-\mathrm{O}(5)$	$1.383(12)$	$\mathrm{C}(12)-\mathrm{O}(6)$	$1.371(12)$
$\mathrm{C}(22)-\mathrm{O}(6)$	$1.427(12)$	$\mathrm{C}(2)-\mathrm{C}(1)$	$1.505(16)$
$\mathrm{C}(10)-\mathrm{C}(1)$	$1.531(16)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.508(19)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.526(17)$	$\mathrm{C}(5)-\mathrm{C}(4)$	$1.536(15)$
$\mathrm{C}(18)-\mathrm{C}(4)$	$1.553(18)$	$\mathrm{C}(19)-\mathrm{C}(4)$	$1.509(17)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.528(14)$	$\mathrm{C}(10)-\mathrm{C}(5)$	$1.542(15)$
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.484(15)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$1.513(14)$
$\mathrm{C}(9)-\mathrm{C}(8)$	$1.399(14)$	$\mathrm{C}(14)-\mathrm{C}(8)$	$1.367(13)$
$\mathrm{C}(10)-\mathrm{C}(9)$	$1.534(15)$	$\mathrm{C}(11)-\mathrm{C}(9)$	$1.395(15)$
$\mathrm{C}(20)-\mathrm{C}(10)$	$1.555(17)$	$\mathrm{C}(12)-\mathrm{C}(11)$	$1.350(15)$
$\mathrm{C}(13)-\mathrm{C}(12)$	$1.398(14)$	$\mathrm{C}(14)-\mathrm{C}(13)$	$1.366(15)$
$\mathrm{C}(16)-\mathrm{C}(13)$	$1.480(16)$	$\mathrm{C}(15)-\mathrm{C}(14)$	$1.467(15)$
$\mathrm{C}(17)-\mathrm{C}(16)$			

References

1 M.I. Bruce, Angew. Chem., Int. Ed. Engl., 16 (1977) 73.
2 J.M. Cooney, L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 336 (1987) 293.
3 L.H.P. Gommans, L. Main and B.K. Nicholson, J. Chem. Soc., Chem. Commun., (1987) 761.
4 L.S. Liebeskind, J.R. Gasdaska and J.S. McCallum, J. Org. Chem., 54 (1989) 669.
5 R.C. Cambie, M.R. Metzler, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 381 (1990) C26.
6 R.C. Cambie, M.R. Metzler, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 398 (1990) C22.
7 A.D. Ryabov, Synthesis, (1985) 233.
8 H. Horino and N. Inoue, J. Org. Chem., 46 (1981) 4416.
9 K. Carr and J.K. Sutherland, J. Chem. Soc., Chem. Commun., (1984) 1227.
10 L.H.P. Gommans, L. Main and B.K. Nicholson, J. Chem. Soc., Chem. Commun., (1986) 12.
11 S.A. Crawford, Ph.D. Thesis, University of California, 1975.
12 R.C. Cambie, M.R. Metzler, C.F. Rickard, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 425 (1992) 59.
13 B.R. Davis and W.B. Watkins, Aust. J. Chem., 21 (1968) 2769.
14 A.C. Grimsdale, Ph.D. Thesis, University of Auckland, NZ, 1989.
15 C.R. Bennett, R.C. Cambie and W.A. Denny, Aust. J. Chem., 22 (1969) 1069.
16 E.J. Parish and D.H. Miles, J. Pharm. Sci., 73 (1984) 694.
17 E. Wenkert, P. Beak, R.W.J. Carney, J.W. Chamberlin, D.B.R. Johnston, C.D. Roth and A. Tahara, Can. J. Chem., 41 (1963) 1924.
18 A.K. Bose, M.S. Manhas and R.C. Cambie, J. Org. Chem., 30 (1965) 501.
19 A.E. Lickie, A.C. Rieke and D.M.S. Wheeler, J. Org. Chem., 32 (1967) 1647.
20 R.C. Cambie, G.R. Clark, D.R. Crump and T.N. Waters, Chem. Commun., (1968) 183.
21 E. Breitmeier and W. Voelter, in Carbon-13 NMR Spectroscopy, 3rd Edn., VCH Publishers, Florida, 1986.
22 P.B.D. de la Mare, in Electrophilic Halogenation, Cambridge University Press, Cambridge, 1976.
23 E. Campaigne and W. Thompson, J. Am. Chem. Soc., 72 (1950) 629.
24 H. Alper and W.G. Root, J. Am. Chem. Soc., 97 (1975) 4251.
25 H. Alper and C.K. Foo, Inorg. Chem., 14 (1975) 2928.
26 Yu.A. Ustynyuk, l.U. Barinov and E.I. Sirotkina, Doklady Akad. Nauk USSR, 187 (1969) 112.
27 I.J. Harvie and F.J. McQuillin, J. Chem. Soc., Chem. Commun., (1976) 369.
28 B.A. Grigor and A.J. Nielson, J. Organomet. Chem., 129 (1977) C17.

29 A.J. Nielson, J. Chem. Soc., Dalton Trans., (1981) 206.
30 A.K. Mahaptra, D. Bandyopadhyay, P. Bandyopadhyay and A. Chakravorty, J. Chem. Soc., Chem. Commun., (1984) 999.
31 A.K. Mahaptra, D. Bandyopadhyay, P. Bandyopadhyay and A. Chakravorty, Inorg. Chem., 25 (1986) 2214.

32 A.W. Cabral, Ph.D. Thesis, University of California, 1981.
33 R.F. Heck, J. Am. Chem. Soc., 90 (1968) 5542.
34 R. Criegee, P. Dimroth and R. Schempf, Chem. Ber., 90 (1957) 1337.
35 R.E. Ireland and P.W. Schiess, J. Org. Chem., 28 (1963) 6.
36 R.C. Cambie, P.I. Higgs, P.S. Rutledge and P.D. Woodgate, J. Organomet. Chem., 384 (1990) C6. 37 F.R. Preuss and R. Menzel, Arch. Pharm., 291 (1958) 377.
38 R.F. Heck, in Palladium Reagents in Organic Synthesis, Academic Press, New York, 1985.
39 R.C. Cambie, P.S. Rutledge, M. Tercel and P.D. Woodgate, J. Organomet. Chem., 315 (1986) 171.
40 R.C. Cambie, G.R. Clark, S.R. Gallagher, P.S. Rutledge, M.J. Stone and P.D. Woodgate, J. Organomet. Chem., 342 (1988) 315.
41 G.M. Sheldrick, shelxs-86. Institut für Anorganische Chemie, Universität Göttingen, Germany, 1986.

42 G.M. Sheldrick, shelx-76, University Chemical Laboratory, Cambridge, England, 1976.

[^0]: Correspondence to: Professor P.D. Woodgate, Department of Chemistry, University of Auckland, Private Bag, Auckland, New Zealand.

